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Abstract

This paper evaluates the ability of the empirical model of asset pricing of Campbell
(1993a,b) to explain the time-series and cross-sectional variation of expected returns of
portfolios of stocks. In Campbell’s model, an alternative risk-return relationship is derived
by substituting consumption out of the linearized first-order condition of the representative
agent. We compare this methodology to models that use actual consumption data, such as
the model of Epstein and Zin, 1989, 1991, and the standard consumption-based CAPM.
Although we find that Campbell’s model fits the data slightly better than models which
explicitly price consumption risk, and provides reasonable estimates of the representative
agent’s preference parameters, the parameter restrictions of the Campbell model, as well as
its overidentifying orthogonality conditions, are generally rejected. The parameter restric-
tions of the Campbell model, and the overidentifying conditions, are marginally not rejected
when the empirical model is augmented to account for the ‘‘size effect’’.
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1. Introduction

Based on Rubinstein (1976), Lucas (1978) and Breeden (1979), much of the
recent work in equilibrium asset pricing seeks to link both the cross-sectional and
the time-series pattern of expected asset returns with the pattern of covariances
between realized returns and consumption growth. Empirical tests of a simple
model of consumption and asset returns, the so-called Consumption Capital Asset
Pricing Model (CCAPM), lead to strong statistical (Hansen and Singleton, 1983)
and economic (Mehra and Prescott, 1985) rejections across a wide range of assets,
and perform poorly when used to explain the cross-sectional variation in expected
stock returns (Mankiw and Shapiro, 1986).

Researchers point out a number of shortcomings in the original tests of the
CCAPM, however. First, the tests concentrate on a restrictive theoretical version
of the model, which assumes that agents’ preferences are of the time-separable,
single parameter, isoelastic family. Second, the tests use consumption data, which
are plagued by measurement error and time-aggregation bias (Grossman et al.,
1987, Wheatley, 1988, and Breeden et al., 1989). Finally, the consumption of asset
market participants may be poorly proxied by aggregate consumption (Mankiw
and Zeldes, 1991).

Recently, alternative models which allow richer structures for agents’ prefer-
ences (Weil, 1989, 1990, Epstein and Zin, 1989, 1991, Constantinides, 1990) have
been introduced. Moreover, the aggregation and measurement problems in con-
sumption have led researchers to seek alternative expressions for the consumption
factor. Campbell (1993a,b) presents the most prominent effort of this kind. ' By
linearizing the representative consumer’s budget constraint, Campbell expresses
unanticipated consumption as a function of the expectational revisions in current
and future returns on wealth. Using this expression to substitute consumption out
of the representative agent model leads to a relation between an asset’s expected
return and the covariance of its return with the market return and with state
variables that predict the sum of discounted future market returns. This approach
results in a multi-factor asset pricing model similar to Merton’s partial equilibrium
model (Merton, 1973). In Campbell’s model, however, priced risk factors are
chosen using an explicit criterion: economic variables that predict the future return
on wealth will be priced in equilibrium. This criterion supplements the economic
intuition used in previous attempts to find macroeconomic factors, as in Chen et
al. (1986) and deflects Fama’s criticism (Fama, 1991) that the ‘‘measured relations
between returns and economic factors are spurious’” (Campbell, 1993b).

' Kazemi (1992) presents a model in which the rate of return on a very long-term default-free real

consol bond is perfectly negatively correlated with the representative investor’s marginal utility of
consumption. Kazemi’s result appears in the model of Campbell (1993a, p. 498) as well. Bossaerts and
Green (1989) also derive a two-factor model in which real bonds play an important role in asset
pricing. See also Breeden (1986).
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In this paper we evaluate the empirical significance of generalized asset pricing
models using Campbell’s strategy of substituting measured consumption out of an
empirical model of asset prices based on the work of Epstein and Zin and Weil. :
Using regression analysis, we identify state variables which predict the return on
the market portfolio. We then adopt the vector autoregression (VAR) approach of
Campbell (1991, 1993a) to compute the conditional covariances of the state
variables with returns on ten stock portfolios ranked annually by size. A consump-
tion risk factor is constructed as a weighted average of the covariances of the state
variables — the state variable risk factors — with weights derived from the VAR
parameter estimates. The generalized method of moments (GMM) is used to
estimate simultaneously the parameters of the VAR and the conditional form of
consumption-based asset pricing models. We subsequently compare Campbell’s
empirical model with its unrestricted multi-factor version as well as with the
empirical models that use actual consumption data. Other papers, most notably
Campbell (1993b), have also attempted to apply Campbell’s model to the data, but
do not directly compare models with and without consumption data.

The paper is organized as follows: Section 2 reviews the non-expected utility
model and the modifications made to substitute consumption out of the model.
Section 3 describes the data, the choice of risk factors, and the VAR models that
characterize the joint evolution of stock returns, the growth in consumption, and
the remaining state variables. Section 4 presents empirical tests of the Campbell
model and contrasts it with an unrestricted multi-factor model, the two-factor
Epstein—-Zin—Weil model using measured consumption data, and single factor
models such as the static CAPM and consumption CAPM. Section 5 summarizes
our findings.

2. Theoretical and econometric framework
2.1. Substituting consumption out of the model

Let C, denote real per capita consumption at time #, W, denote individual
wealth at time ¢, R, ., denote the gross real rate of return on wealth (the
“‘market portfolio’’), and E{- | {2,} represent the mathematical expectation condi-
tional on the information at ¢. The representative consumer’s objective in Epstein
and Zin (1989, 1991) or Weil (1989, 1990) is to choose at each date investments

? In this regard, the work in this paper is similar to that of Campbell (1993b) and Li (1992) who
also apply Campbell’'s model to the data. Campbell (1993b) departs from the standard practice in
finance, however, by extending the empirical model to include human wealth as a component of total
wealth. Unlike the current paper, Campbell (1993b) examines the unconditional version of his model.
That is, he uses the unconditional moments of return innovations to estimate the model. In this regard
Li’s paper is closer in spirit to the current paper.
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and a planned consumption path in order to maximize the recursively-defined
function:

U= {(1-B)CT + B(E(U., | )} st Wy, =R, (W, = ).
(1)

In Eq. (1), B is the constant subjective discount factor, y is the constant
coefficient of relative risk aversion, and € is equal to (1 — y)/(1 — 1 /o), where
o is the elasticity of intertemporal substitution. When vy =1/, and thus 6= 1,
Eq. (1) reduces to the objective function with time-separable power utility. For any
asset { with a gross rate of return R;, Epstein and Zin (1989, 1991) and Weil
(1989, 1990) show that a maximizing consumer at an interior optimum will choose
consumption such that the following Euler equation is satisfied:

10

E 'B(CHI)_; { 1 }I—HR o l=1 2)
C/ R"”+] i+l ’ :

To empirically implement the above condition, Epstein and Zin (1991), Giovan-
nini and Weil (1989), and Campbell (1993a) take a second-order Taylor approxi-
mation of Eq. (2) for any risky asset i as well as for a risk-free asset. (Alterna-
tively, one can assume that the growth in consumption and the discrete asset
returns are jointly log-normally distributed.) Denote the continuously compounded
growth in real consumption by Ac,,, =In(C,,,/C,), and the continuously com-
pounded returns on aggregate wealth and any asset i by r,,,,, =In(R,, ,, ) and
ri,+1 =In(R, ), respectively. The Taylor approximation results in the following
risk-return relation:

1 0
SVt (1 =0V, + =V, (3)
o

2 im,t
= Var(ri,H—l I Zx)’ Vic = Cov(r,-.H 1 AC!+1 | Z,), Vim = COV(F-VH I

1

E(ri,r+1 lzl) Va1 T T

where V,

iir
Fui+1 | 2,), and z, denotes a vector of predetermined variables that are elements of
the information set (2, When y=1 and thus 8=0, Eq. (3) collapses to a
one-factor model like the logarithmic static CAPM. Alternatively, when y=1/0
and thus 6= 1, Eq. (3) collapses to the consumption CAPM. > Note that the
coefficient of relative risk aversion, v, is equal to the sum of the prices attached to

market and consumption risk, that is: (1 — 8) + 6/0 = vy, while the elasticity of

* When the elasticity of intertemporal substitution, o, equals 1, 6 becomes infinite, and the model
resembles neither the static CAPM nor the consumption CAPM. In this case the consumption-wealth
ratio (the marginal propensity to consume) is constant and V,,, = V, . Giovannini and Weil (1989) show
however, that asset pricing is not myopic unless y is also unity.
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intertemporal substitution, o, is the ratio of one minus the coefficient on the
market factor, 1 — (1 — 6), divided by the coefficient on the consumption factor,
6/c. If reliable consumption data exist, one can use Eq. (3) to assess the
explanatory power of the model in the cross section and time series of asset
returns. In the empirical section (Tables 4 and 5), we present the results of such an
exercise. Our main interest, however, is in the form of the model that does not
price consumption risk explicitly, and does not require the use of consumption
data. We now review the derivation of this specification.

Linearizing the consumer’s dynamic budget constraint around an average
consumption-wealth ratio, letting ¢, denote In(C,), and using the Euler Eq. (2),
Campbell (1993a) derives an expression for the unanticipated component of
current consumption:

Crv1 — E(C1+1 l Z,)

=rm,1+l _E(rm,r+1 |Z,)+(l —O') E

e
ijrm,r+1+j|zt+l)

j=1

e
ijrm.t+l+j | Z,)

j=1

—E

-|E ijl“(‘m.t+l+j|zt+l —E

j=1
In Eq. 4, u,, =0 WmB+U/2(0/0) Valdc,,,—0o r,,, |z,] and the
discount factor p is equal to 1 — exp(a), where a is the mean log consumption-
wealth ratio constructed from average sample values around the point of lineariza-
tion. p thus reflects the average ratio of consumption to wealth. In the spirit of
Cox et al. (1985) (CIR), Campbell imposes the condition:

/—Lm,r = Mo + djE( rm,t+l | zr)'

This is a sufficient but not necessary condition for substituting consumption out of
the model. In the presence of time-varying conditional variance (heteroskedastic-
ity) of consumption growth, we have +# 0. If the conditional variance of
consumption growth relative to the return on wealth is constant (homoskedasticity),
then ¢ = 0. Making the appropriate substitution in Eq. (4) yields:

Crv1 — E(Ct+l |Z,)

=Tmi+1 E(rm,r+l | zt)
x<

+(l—-o—¥)|E ijrm,t+1+j|zy+1

j=1

ij:u“m,t+1+j‘z1) . (4)

j=1
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Substituting Eq. (5) in Eq. (3) results in an alternative form of Eq. (3) as follows:

I 4
E(ri,t-é—llzl)_rf.HLl:_5‘/{!&+ lmr+(y—l)(1+ 1)‘/[h,1’
(6)

where V,, , is the conditional covariance of asset i’s return with the revision from
t to t+ 1 in the expected discounted value of future returns on invested wealth: *

x o

V, = Cov r:H—l’E Zp'lrm.t+1+/|zr+l —E ijrm,!+l+j|zt |Z,
j=1 j=1

Eq. (6) is a risk-return relationship that explicitly prices market risk and the risk
attached to innovations in future investment opportunities. When (y— Df1 +
/(o — 1)]>0, then an asset { whose returns are highly positively correlated
with innovations in future returns on the market portfolio (V,, > > 0) will have a
higher expected return. This asset will be less desirable since it cannot be used to
hedge against the risk of such innovations.

Although Eq. (6) does not explicitly price consumption risk, the average
consumption-wealth ratio, reflected in the discount factor p, is embodied in the
expression. Also, the derivation of Eq. (6) requires making a rather ad hoc
assumption about the conditional second-order moment of consumption. There-
fore, consumption is not completely endogenized in this model aithough the
alternative assumptions concerning time variation in the second moments of
consumption (i.e., either homoskedasticity or conditional heteroskedasticity of the
CIR form) allow us to estimate the model without consumption data. The
treatment of the time-varying covariances is a difficulty in Campbell’s model as it
ignores evidence that conditional heteroskedasticity for returns is typically of the
ARCH form. Any rejection of the model under heteroskedasticity (¢ # 0), there-
fore, must be interpreted in light of a possible mis-specification of the form of the
conditional heteroskedasticity. >

*ltis easy to interpret the last term in Eq. 5 when o > 1 or ¢y = 0: When the coefficient of relative
risk aversion 7y is less than one, assets that have high returns whenever there is good news about future
investment opportunities have lower mean returns. The intuitive explanation is that assets with positive
covariances are desirable because they enable the consumer to profit from improved investment
opportunities, but undesirable because they reduce the consumer’s ability to hedge against a deteriora-
tion in such opportunities. Whenever y <1, that is, when investors do not care as much about the
reduced hedging opportunities, the former effect dominates the latter; asset prices are higher and the
mean return lower. When y =1, the two effects cancel each other out and Eq. (5) reduces to the
traditional static CAPM where only the covariance with the market is relevant for asset pricing.

% Campbell (1993a,b) shows that when o = 1 the two-factor model with time-varying covariances,
Vim. and V. holds exactly. Restoy (1992) linearizes the Euler Eq. (1) (instead of the budget
constraint) and derives a similar two-factor model in which the time-varying covariances follow
GARCH processes that are uncorrelated with the market.
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In order to find an empirical proxy for V,,,, Campbell (1993a) proposes
modeling the return on the market portfolio as the first element of the K-element
state vector z,,,, which is assumed to follow a first-order VAR ¢ with a
coefficient matrix A, and a disturbance vector w =[w, ,....w, I

2,4 =Azt+wt+l‘ (7)

The expected return on invested wealth in period ¢+ 1 +j conditional on z, is
written as:

E( rm,r+l+j | Z,) = el’Aj+lzf’

where el is a conformable vector whose first element is unity and whose
remaining elements are zero.
The discounted sum of revisions in forecasted r, can now be written as:

E ijrm,r+]+jlzt+l —E ijrm,t+l+jlzt)
j=1 j=1
=Xw, ; A=elpA(I—pA)~". (8)
The vector A =[A,,...,Ax] has dimension equal to the number of state variables

in the VAR. The covariance of asset i’s return with the discounted sum of
revisions in forecasted r, can now be expressed as:

K
Vih,:=COV[ri,t+1”\wr+l |zt] - Z)‘kVik,n (9)
k=1

where V,, , = Covlr,,, |, w,,12,], w, ., being the kth element of the vector of
VAR disturbances w,, , and A, the kth element of vector A. Since by construc-

tion V,, , = V,, ,, we can re-express Eq. (6) as:
1
E(ri,H—l |Z,) “Fae1 T T EVii,t + ‘Yvil,r
W K
0125 Sav, (10
o—1 =1

Eq. (10) has a form similar to a standard K-factor asset pricing model (Merton,
1973). In addition, Campbell’s methodology suggests that the chosen factors ought
to be related to variables that help predict market returns. The contribution of the
VAR approach is a set of restrictions on the prices of these risk factors. Asset i’s

® The assumption that z, follows a firsr-order VAR is not restrictive because any p-order VAR
system can be stacked into a companion-form first order system. For the sake of parsimony and
computational ease, our empirical work deals exclusively with first-order VAR systems. We justify our
use of a first-order system in Section 3.3.



274 G.A. Hardouvelis et al. / Journal of Empirical Finance 3 (1996) 267-301

covariance with the market, denoted by V,, ,=V,, , has a risk price of y+ (y—
DI1 + ¢/(o — D]A,. The other factors have risk prices of (y— D1 + /(o —
DJA,. That is, the risk price of each factor, k, where k # 1, is proportional to A,
where A, measures the expectational revision in the present value of market
returns resulting from a unit innovation in the state variable k. This set of
proportionality restrictions implies a two-factor model: the first factor is the
market factor, V,;, whose price is vy ; the second factor is the linear combination of
covariance terms, XAV, ,, whose price is (y — D[1 + ¢/(o— D]

A further restriction can be imposed if the conditional covariance of consump-
tion growth relative to the return on wealth is constant, that is under homoskedas-
ticity when = 0. In this case, the two-factor Campbell model is expressed as
follows:

1 K
E(ri,t+1 |zt)_rf.1+l = _EVii_ Z)‘k‘/ik+y
k=1

K
Vil+Z/\kVik)' (11)
k=1
The above model identifies the coefficient of relative risk aversion v and can be
compared with the one-factor consumption CAPM, which also identifies vy.

2.2. Econometric issues

To simplify the estimation, we can eliminate the Jensen inequality term,
—(1/2) V,,, from Eq. (11) by substituting the expected discrete returns for the
expected continuously compounded returns. To see this, note that if R; denotes the
discrete gross real rate of return on a risky asset or porifolio of assets i, R,
denotes the discrete gross real risk-free rate of return, and r; and r; denote their
respective continuously compounded returns, then the following approximation
holds: E(r,,,,12)+U /2D V,,—r;, ., =ER,,, 12)—R,,.,.  We can thus
write an approximate version of the risk-return relationship in Eq. (11) as:

W

o—1

E(Ri.1+l |Zx) —R;, . =vV,, T (y- ])(1 +

K
)}:Akv,-k,,. (12)
k=1

Next, note that the conditional covariance between the return on asset i and state
variable k, denoted by V,, , is equal to E[r, ., w,,, ] That is, in order to form
conditional covariances of portfolio returns with the state variables, it is not

7 By definition, R =exp{r}. Taking the second-order Taylor series expansion of exp{r} around
r=0 leads to: R=1+r+(1/2)r% It follows that ER, . =1+Er,_ ., +(1/2) [V, +
(E,r;,+ ) Similarly, R, =1+r,,, +(1/2) (r;,,,)’. Assuming that the term (1/2)
[E,r,+ )" —(rs,4 )] is approximately zero, implies that E,R; .~ Ry, = E;r; = rpq +
(1/2) V,;,. Alternatively, under log-normality, the term E(r; . |z)+(1/2) V,; is exactly equal to
I(E(R;,,,1z,)). Approximating In(E(R,,, 1z)) by ER;, ., —1 and In(R, ) by R, ., — 1,
leads to a similar expression as above.
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necessary to compute portfolio return residuals based on regressions of the
portfolio returns on the state variables. Hence, the number of estimable parameters
is reduced considerably and the estimation becomes less cumbersome.

Our empirical models are based on the VAR in Eq. (8) and the ex post versions
of the appropriate approximate risk-return relationships. ® For example, the VAR
and the approximation to Campbell’s two-factor model under heteroskedasticity in
Eq. (12) imply the empirical model:

[ ’ —1
Wil =24 _Az,; A =€1pA(I—pA)

K
Uis1 =Ry — R_t,t+l - bM(Wl,x+1ri,r+|) = byc Z )‘k(wk,t+1ri,z+|)§
k=1

i=1,....N, (13)

where b,, is an estimate of y and by is the estimate of (y — D[1 + ¢/(o — 1)].
In Eq. (13), N denotes the number of assets /portfolios used to estimate the model,
while v,,,, denotes the innovation in the return on portfolio i relative to its
conditional mean. The actual estimation allows for constant terms in the VAR, so
that the state variables in z are interpreted as deviations from their respective
means. Observe that in Campbell’s two-factor model under heteroskedasticity
(¢ # 0), the parameters i and o cannot be separately identified. The empirical
model corresponding to Campbell’s two-factor model under homoskedasticity
results when we restrict by to equal b,, — 1 in Eq. (13).

Recall that the parameter p reflects the consumption-to-wealth ratio at the point
of linearization. Because p is not a behavioral parameter we do not estimate it.
Rather, in each of the empirical models that involve p, we set p equal to 0.985

There is an important reason for the use of the approximate versions in our estimations, namely

computability. Looking forward, the model in Table 5 (Panel A) of this paper estimates 14 equations
with 34 estimable parameters under the approximate version. Using the exact version of the model, the
number of equations would rise by 10 (one for each portfolio) to 24, and the number of estimable
parameters would rise by 50 (10 equations X 5 instruments) to 84. Using GMM, estimations of such
size rarely converge. To lend credence to the use of the approximation, we compared the results from
an estimation of the exact model (when it did converge) to the results of the corresponding approximate
model. This was possible for the case of the Epstein—Zin—-Weil model of Table 5 (Panel D), for
example. In the estimation of the exact version of this model, the estimated parameters and their
standard errors are by, = 7.06 (2.06) and by = 80.4 (24.89), which are close to the corresponding
estimates reported in Table 5. Alternatively, we can compare the reported results to the results of
estimating a two-stage system of equations that treats the first-stage OLS residuals — from regressing
each of the portfolio returns on the set of instruments — as data, but does not make use of the
approximate model. The two stage procedure reduces the number of estimable parameters in the
second-stage GMM estimation by 50. Although these subsystems are mis-specified, the two-stage
estimation converges quickly because of the smaller number of estimable parameters in the second
stage. The differences between the results reported in the tables, and those of the two-stage procedure,
were again minor.
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(equivalent to 0.941 at the annual frequency), effectively treating it as data. ° This
value corresponds to an average consumption-to-wealth ratio of six percent, which
is the value used by Campbell (1993a,b) in his simulations. To test whether the
results of our empirical work are sensitive to reasonably larger or smaller values of
p, we also estimated each model using values of p corresponding to a two percent
and an eight percent (annual) consumption-to-wealth ratio. We found that using
the alternative values of p did not significantly affect the results or conclusions of
our estimations. '°

We estimate systems of equations such as Eq. (13) using the Generalized
Method of Moments in case (ii) of Hansen (1982, p. 1043). Case (ii) allows for
conditional heteroskedasticity of the error terms in w and the v,. """ In each version
estimated, we use K + | instruments: the K state variables of the VAR model plus
a constant. The model above implies the orthogonality condition:
Elw, .0\ ,11,...:Un,4112,,11=0. With K+ 1 instruments and N assets/port-
folios (i =1,...,N), there are [(K + 1) X (N + K)] orthogonality conditions. The
number of over-identifying restrictions will be equal to the number of orthogonal-
ity conditions minus the number of estimated parameters. The number of estimated
parameters will be determined by the particular specification of the model. To see
how the estimation and the tests of the models are performed, let & denote the
vector of the unknown (model plus VAR) parameters, and let u,,, =
(W, 1201 441--->Un,4 1) denote a vector of dimension N + K, which contains the
K VAR residuals w, ., and the N asset/portfolio residuals v, . ,. Let also f,(8)
denote the vector of (N+ K) X (K+ 1) orthogonality conditions, f,(8)=
Veclu,, , ® (z,,1)]. The parameter vector 8 is chosen to make the orthogonality
conditions as close to zero as possible by minimizing the quadratic J,(8), defined
as follows:

Jr(8) =gT(5)’WTgT(6)’
where
-1

1 I 1T
gT(8)=?th(8);WT= ?Z[u1+lu,t+l®zlzlt]

=1 t=1

® Rather than impose a value, Li (1992) estimates p using the heteroskedastic model. Li’s estimate
of p is 0.919 (monthly) with a standard error of 0.041. This corresponds to a consumption-wealth ratio
of 0.64 at an annual rate.

' More specifically, using the alternative values of p did not change the statistical inference derived
from any tests of the orthogonality conditions or auxiliary parameter restrictions. Neither were any
parameter estimates qualitatively different under the two alternative values of p.

" If the distribution of the equation error terms deviates from the joint normal distribution, then
allowing for conditional heteroskedasticity leads to more robust tests of the various hypotheses.
MacKinlay and Richardson (1991) show, for example, that traditional multi-variate Wald statistics of
the hypothesis of mean-variance efficiency, which assume conditional homoskedasticity, lead to
incorrect critical values; by contrast, statistics based on Hansen’s case (ii) GMM provide robust tests.
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The vector g,(8) has (N + K) X (K + 1) elements, and the weighting matrix Wy
has (N + K) X (K + 1) rows and (N + K) X (K + 1) columns. The minimization
begins by setting W, equal to the identity matrix, and the VAR parameters equal
to their counterparts estimated by OLS. In each subsequent iteration, a new
estimate of W, is constructed from the estimated equation residuals of the
previous step and the predetermined instruments, z,. Hansen (1982) shows that the
minimized value of J;, denoted as Jj, is distributed asymptotically as a x°*
statistic with degrees of freedom equal to the number of overidentifying restric-
tions conditions, namely, the total number of orthogonality conditions minus the
number of estimated parameters. Jg provides a specification test of the model; a
high J, statistic indicates that the disturbance vector [w), |,v
correlated with the vector of instruments [z,,1].

In the models of the later subsections, we are also interested in testing certain
linear and non-linear parameter restrictions. For this purpose, we use a Wald
statistic, constructed from the parameters of the unrestricted model. 2 Suppose,
for example, we wish to test the two restrictions: £(8) = £,(8) = £,(8) (as we
do later in Table 5, Panel A), where £,(8), £,(8), and &,(8) are distinct
scalar-valued non-linear functions of the model’s vector of parameters 8. Define
the vector £=(§,,£,,£;). The three by three variance-covariance matrix of £,
L, equals [0£/38 YX[0€/38], where ¥ denotes the p by p variance-covariance
matrix of 8, where p is the number of elements of vector 8, and [d¢/38] is the p
by three matrix of partial derivatives of the elements of vector £ with respect to
the elements of vector §. Let P denote the two by three matrix of the above
restrictions on vector £ (the first row could be (1,— 1,0) and the second row
(1,0,— 1)). Then the Wald statistic,

@, =[Pe][ P P] '[PE],

is asymptotically a y* statistic with two degrees of freedom.
Because our set of instruments corresponds to the set of state variables in the
VAR, the subset of orthogonality conditions applied to the VAR errors, that is

i,H—l""’UN,t+l] 18

"2 We also considered another statistic, suggested by Hansen. This statistic, call it ¢, resembles a

likelihood ratio statistic and is computed as the difference in the Jg statistics from the restricted and
unrestricted models. Hansen shows that under the restricted specification @ is distributed asymptoti-
cally as a x? statistic with degrees of freedom equal to the number of restrictions. Like the Wald
statistic (@, ) we report, the @, statistic will deviate from its asymptotic distribution in small samples.
Moreover, in small samples, the weighting matrix, Wy (used to construct the J,,; statistics), will differ
between the restricted and unrestricted models. In cases where the parameter restrictions are not
especially binding, different weighting matrices may cause the J, statistic to be greater for the
unrestricted specification than for the restricted specification, leading to a negative (i.e., perverse) @,
statistic. In contrast, the Wald statistic does not ever have this ‘‘problem’’, because its construction
uses a single covariance matrix from the estimation of the unrestricted model only. For this reason, we
report the Wald statistic, @, . Although, as is well-known, the value of the likelihood ratio statistic is
less than that of the Wald (so that use of the Wald favors rejection), in no cases did the use of Hansen's
@, statistic lead to statistical inferences that widely diverged from those using the Wald statistic &y,.
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E(w,, |z,) =0, are the same orthogonality conditions that OLS imposes. Thus, if
the system of equations in Eq. (13) consisted only of the X VAR equations,
GMM and OLS would provide similar VAR parameter estimates. The additional
portfolio equations, however, force the GMM estimates of the VAR parameters to
differ from the OLS estimates. Such differences are likely to be larger when the
estimated model does not properly account for the time-series and cross-sectional
variation in the expected returns of the N assets/portfolios.

3. Data and the choice of risk factors

Our data are quarterly and run from 1959:1 through 1991:4. The beginning of
the sample is dictated by the availability of consumption data, which begin in 1959
and are required in the comparison of models with and without consumption data.
The quarterly frequency is the frequency also used by Mankiw and Shapiro
(1986), who compare the CAPM with the consumption CAPM using consumption
data. This frequency reduces the noise in consumption growth rates generated
from the use of average — rather than month-end — consumption.

3.1. Constructing portfolios

The stock return data come from the monthly tapes of the Center for Research
in Securities Prices (CRSP) and include all firms listed on the New York Stock
Exchange (NYSE) and the American Stock Exchange (AMEX). We compute
quarterly discrete individual firm returns by cumulating the consecutive monthly
returns of a given quarter 1 as follows: R, — 1= +y, X1 +y, |, X1 +y, ,.)
— 1, where y, , denotes the discrete return over the last month of quarter ¢.

The method of constructing stock portfolios closely follows Fama and French
(1992). To form portfolios, we pre-rank all firms in each year by the market value
of their equity as of December of year 7— 1, and subsequently allocate them into
ten deciles in ascending order with an equal number of firms in each decile.
Keeping the firms in the portfolios fixed, we then compute quarterly returns for
the fiscal year that begins in July of year 7 and ends in June of year 7+ 1. The
portfolio returns are value-weighted, with weights proportional to the value of the
firm at the end of the previous quarter. " The time series of portfolio returns can
be viewed as the returns to mutual funds with changing compositions. '*

P The gap of six months between the ranking date and the date we begin recording returns has no

bearing on our analysis. It is chosen to facilitate comparisons with other work, as in Fama and French
(1992), that uses accounting variables to rank firms into portfolios.

"% Shanken and Weinstein (1990) use a similar approach to portfolio construction. They point out
that other procedures which fix the firms in each portfolio according to a post-ranking characteristic
(ranking, say, as of the end of a five year period that is used to estimate the betas) lead to biased beta
estimates. Our pre-ranking procedure is immune to such biases.
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Table 1 presents summary statistics on the portfolio quarterly returns. Returns
are computed in two ways: Panel A presents continuously compounded real
returns, corresponding to r;, which serve as the basis for computing conditional
covariances with the state variables. Panel B presents discrete excess returns,
corresponding to R;, which serve as the dependent variables in the later empirical
analysis. The table shows that the smaller the size of the portfolio, the higher both
its volatility and its average return. Observe that the excess skewness and excess
kurtosis are statistically significant for many of the portfolios, suggesting non-triv-
ial deviations from the normal distribution. Finally, as expected, the autocorrela-
tions at lags one through four are close to zero.

3.2. Risk factors

Campbell’s model suggests that priced factors should be found by choosing the
variables that help forecast the return on wealth. Since this return is unobservable,
we follow the practice of using the return of the aggregate stock market as a proxy
for the return on wealth. Despite Roll’s critique (Roll, 1977), Stambaugh (1982)
provides some justification for this practice by showing that broader indices of
wealth are highly correlated with the stock market index, apparently because the
high volatility of the stock market index dominates the broader indices. An
alternative approach is to introduce human capital directly in the measure of
wealth (Campbell, 1993b). Although this is a valid approach in this context, we do
not pursue it here. In our opinion, the measurement of human capital is potentially
as fraught with error as the measurement of consumption.

In addition to the market return, a number of multi-factor studies choose
macroeconomic variables as other potentially priced factors. This choice is based
on economic intuition that may not be too different from the intuition that
underlies the explicit criterion of stock return predictability. For example, both
Chen et al. (1986) and Chan et al. (1985) include measures of changes in the
quality spread and the term structure spread, and anticipated and unanticipated
inflation. Ferson and Campbell (1991) include the change in the term structure
spread, the real short-term rate, and growth in consumption. Most of these
variables have been shown to predict stock returns, although the connection
between a potentially priced factor and the predictability of stock returns is not
made explicit.

The evidence on stock market forecastability is extensive (e.g., Campbell,
1987, Campbell and Shiller, 1988, Chen, 1991, Fama and French, 1989, Fama and
Schwert, 1977, Froot, 1990, Hardouvelis and Wizman, 1992, Harvey, 1989,
Hodrick, 1992 and Keim and Stambaugh, 1986). In this paper, we follow the
common practice of using financial variables to predict stock returns. Financial
variables immediately capture the beliefs and forecasts of market participants, who
are forward looking. However, since the relation between financial variables and
future stock returns is not structural, such a relation may deteriorate over time. For
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example, the spread between the excess return of a three-month T-bill over a
one-month T-bill may be an excellent predictor for most of the sample, but
financial innovations, or a shift in the focus of financial market participants away
from the short-term actions of the Federal Reserve may alter the informative
content of this variable. With this in mind, we are guided in our choice of risk
factors by parsimony of the eventual model and the empirical robustness of the
predictors as evidenced by similar regression coefficients in both univariate and
multivariate regressions and across subperiods. On this basis the dividend yield
and the first difference in the average quarterly three-month T-bill rate are chosen.
Moreover, the dividend yield is the natural first candidate on theoretical grounds
(Campbell and Shiller, 1988), while the T-bill yield has been shown to predict the
excess returns on a variety of other assets (Froot, 1990). "

3.3. Summary statistics and OLS vector autoregressions

In addition to the dividend yield and the change in the three-month T-bill rate,
the VAR also includes the real return on the aggregate stock market. This variable
is not a good predictor of the future real stock returns, but we include it for
completeness of the VAR. Although we first estimate the system without including
consumption data (so that K = 3) we also use an augmented VAR model that does
include consumption (K = 4). This is motivated by the desire to model consump-
tion shocks in the same VAR framework, which is necessary because we will

"* In a first-order VAR using a monthly sample, Hodrick (1992) uses the T-bill rate relative to a

twelve-month moving average. Campbell and Ammer (1993) also de-trend the T-bill rate by a similar
moving average. In our framework, the simple first difference of the T-bill yield provides similar
predictions as the T-bill yield relative to a one-year backward moving average. We use the first
difference in the T-bill rate to avoid including in the VAR a second highly persistent series in addition
to the dividend yield series. The presence of two highly persistent series in a VAR may negate the
validity of asymptotic distribution theory used to interpret test statistics (King et al. (1991)). The
three-month T-bill rate relative to trend has slightly higher predictive power for stock returns than the
simple first difference of the T-bill rate. The use of the T-bill rate relative to trend does not affect the
GMM estimates of the model parameter but does affects the GMM estimates of the VAR; the own
autoregressive coefficient of this state variable would occasionally exceed unity.

Notes to Table 1:

* The sample consists of 130 quarterly observations (1959:3—1991:4). All NYSE and AMEX firms in
the CRSP tapes are pre-ranked by the market value of their equity as of December of year 7 — | and
allocated into deciles (i =1,...,10) in ascending order. Portfolio returns are then computed for the
fiscal year that begins in July of year v and ends in June of year 7 + 1. Quarterly gross portfolio returns
are constructed from monthly returns as follows: R, ., =1+ y, ., 1+ y, X1+ ¥, . 1), where
Ym.+1 denotes the CRSP return of the last month of quarter ¢ for portfolio i. Continuously
compounded real returns are defined as In(R, ,, ;)—In(CPI,, | /CPI,), where CPI, ., is the consumer
price index of the last month of quarter r + 1. Excess discrete returns are defined as R, ., — Ry, |,
where R, is the three-month annualized bond-equivalent T-bill yield at the end of quarter ¢ divided
by four. * indicates significance at the 5% level.
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subsequently be interested in comparing Campbell’s model with intertemporal
asset pricing models that do use consumption data.

The VAR state variables are denoted as follows: RRET is the continuously
compounded quarterly real return on the value-weighted NYSE index, constructed
from the CRSP monthly total returns and the Bureau of Labor Statistics consumer
price index. DYLD is the quarterly dividend yield on the NYSE index of stocks.
DTBL is the change in the average quarterly three-month T-bill yield. Finally,
GCON represents the quarterly growth in per-capita consumption from the last
month of the previous quarter to the last month of the current quarter. More
detailed definitions of the VAR state variables are found in the footnote of Table
2.

Panel A of Table 2 provides summary statistics on the VAR variables. The
contemporaneous correlations between the four variables are low, suggesting that
each one contains independent information. The Dickey—Fuller tests in the last
column reject the hypothesis of a unit root in all state variables but the dividend
yield. We attribute the lack of rejection in the case of the dividend yield to the lack
of statistical power arising from the size of the sample. Previous investigators
reject the unit root hypothesis for the dividend yield using the sample from 1926
to the present, but fail to reject it using post-war samples (see Schwert, 1987,
Campbell and Shiller, 1988).

Notes to Table 2:

* The sample consists of 130 quarterly observations (1959:3-1991:4). STD, SKW, and KUR denote
standard deviation, excess skewness, and excess kurtosis, respectively. In Panel A, the Dickey—Fuller
t-statistic tests the null hypothesis of non-stationarity. The null hypothesis is expressed as a = 0 in the
regression equation: AY,= B+ a¥,_,+ B, AYt—1+...+B,Y,_,+u, In Panels B and C, A
denotes the factor weights of the state variables implied by the parameters of the VAR; and L4, L8, and
L12, are the Cumby and Huizinga (1992) x? statistics of the hypothesis that the first, four, eight, and
twelve VAR residual autocorrelations are zero. Heteroskedasticity-consistent r-statistics are inside the
parentheses, and probability values levels inside the brackets. * indicates significance at the 5% level.
® The state variables are defined as follows:

RRET,: Continuously compounded value-weighted quarterly NYSE real return: Inf(1+ v, )1+
Ym— 1. X1+ ¥, J=1In(CPL,  /CPI, _, ), where y, , denotes the discrete return of the last month
of quarter 7 (source: CRSP data tapes) and CPI, , denotes the monthly consumer price index of the last
month of quarter ¢ (source: Bureau of Labor Statistics).

DYLD,: Quarterly dividend yield on the NYSE index constructed from monthly dividends and the
end-of-quarter NYSE index: (D,,, + D,,_,,+ D, _,,)/P,. The monthly dividends are constructed
from two CRSP series of monthly NYSE returns, one hat includes dividend payments, y,, and a
second return series that does not, v, . Setting the base period price to 100, a monthly price series is
derived by solving forward the equation: P, = P, _ (1 + y, ). The dividend of month m is subse-
quently defined as follows: D, = P,,_ (¥, — ¥, ,.)-

DTBL,: First difference in the average quarterly bond-equivalent three-month T-bill yield (source:
CITIBASE).

GCON,: Quarterly growth in per-capital real monthly consumption: In(C, ,/C, ,_,), where C,
equals real non-durable plus services purchases (1982 dollars) divided by population age 16 and over in
the last month of quarter 1.



284 G.A. Hardouvelis et al. / Journal of Empirical Finance 3 (1996) 267-301

Panel B of Table 2 presents the results of estimating by OLS a first-order vector
autoregression using the three state variables: RRET, DYLD, and DTBL. The
corresponding estimates of the vector A, based on the OLS estimates of the VAR,
are presented as benchmarks against which we can later compare the GMM
estimates of A. The VAR has stable coefficients: the hypothesis of VAR parameter
stability cannot be rejected at conventional levels when the sample is partitioned in
the middle. The first row of the panel describes the results of the RRET equation.
Observe that a high dividend yield this quarter forecasts a high real stock return
next quarter. This relationship is intuitive. If the high dividend yield is caused by a
drop in the stock price in response to an increase in the risk premium, the
subsequent rise in stock returns represents the anticipated reward for the extra risk
investors undertook. Observe also that a low T-bill yield leads to a high subse-
quent real stock return. This correlation could also be due to a risk premium. An
increase in risk, which pushes stock prices down, pushes T-bill prices up and their
yield down as investors fly to quality. e

The remaining two equations in Panel B of Table 2 describe the behavior of the
dividend yield, DYLD, and the change in the T-bill rate, DTBL. DYLD has a
strong autoregressive component, but the DTBL is much harder to forecast. The
autocorrelations of the estimated residuals in both equations give the impression of
some extra dynamics that the first-order VAR is unable to capture. However, in
both equations the sum of these autocorrelations is close to zero, suggesting that
the cumulative long-run impact of shocks to the three variables is approximately
the same whether one uses a first-order VAR framework or a higher-order one.
Moreover, Cumby and Huizinga (1992) tests fail to reject the null hypothesis that
the first four (L4), eight (1.8), or twelve (L12) residual autocorrelations are jointly
zero. ' For computational simplicity, the models we estimate in Section 3 utilize
a first-order VAR model. Hodrick (1992), who uses the dividend yield and the
relative T-bill in a monthly sample, also adopts a first-order autoregression. !

The last row in Panel B of Table 2 calculates the multipliers A, of Eq. (6).
Recall that each A, reflects the sensitivity of the discounted present value of
returns to invested wealth to a unit shock in each state variable. Each element of
the vector A is a non-linear function of the parameters of the VAR, A =f(a),

'® Panel A shows that the correlation between DYLD and DTBL is zero, which suggests that DTBL
captures a different type of risk from the one captured by DYLD. Indeed, in the presence of DYLD,
DTBL continues to have significant marginal explanatory power for future stock returns.

" The tests of Cumby and Huizinga do not treat the residuals as data, but allow for the fact that
these residuals contain sampling error. In the consumption equation residuals of Panel C, the L12
Cumby—-Huizinga statistic resulted in a negative-definite covariance matrix. We also constructed the
usual Box—Pierce tests (Box and Pierce, 1970) for the same set of autocorrelations and, for the most
part, these tests fail to reject as well.

'8 Moreover, Hodrick’s simulations show that a parsimonious VAR model used to assess long-run
forecastability provides more reliable test statistics than multi-period regression models.
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where « denotes a vector containing the VAR parameters. The r-statistics in
parentheses are based on asymptotic standard errors, calculated from the diagonal
elements of the matrix [df/da V [8f/3a], where V is the variance-covariance
matrix of the estimated VAR parameters «, and [3f/da] denotes the matrix of
derivatives of the elements of the vector A with respect to each element of the
vector a. Observe that the multiplier of the dividend yield shock, Apyp, is
positive, large, and statistically significant. This evidence is consistent with the
theoretical importance of the dividend yield as a predictor of future stock returns.
The multiplier of a shock to the T-bill yield, Aprg, , is negative with a ¢-statistic of
~1.47. The multiplier of a shock to real aggregate stock returns, Agger, is almost
Zero.

Panel C of Table 2 augments the three-variable VAR of Panel B by adding
consumption growth, GCON. Consumption growth has very little marginal ex-
planatory power in the stock return or the dividend yield regressions, but does help
predict the subsequent change in the T-bill. Predicting consumption growth is as
difficult as predicting real stock returns; the adjusted R? of the consumption
equation is only 7.7 percent, about the same as in the stock return equation.
Observe also that the vector of multipliers A of the three original variables remains
approximately the same. The multiplier of consumption growth, Ascoy, 1S nega-
tive but insignificantly different from zero.

4. Asset pricing models: The evidence
4.1. Models that do not use consumption data

We begin in Table 3 by estimating models that do not make use of measured
consumption data, neither as an explicitly priced risk factor nor as a state variable
or instrument. This provides a benchmark against which we can compare empirical
models that use measured consumption. We use a first-order VAR based on the
first three (K = 3) state variables (k = RRET, DYLD, DTBL). All models are
estimated using four (K + 1) instruments (a constant and the lagged values of
RRET, DYLD, and DTBL). This results in 52 = [(10 + 3) X (3 + 1)] orthogonality
conditions in each of the models estimated in Table 3.

Panel A of Table 3 presents estimates from an unrestricted three-factor asset
pricing model. The model is the empirical analog of Eq. (12) without the
restrictions on the factor prices that Campbell’s model imposes. The model’s J,,
statistic rejects the overidentifying orthogonality conditions ( p-value = 0.03). The
estimated factor weight Apyy, is positive and significant, suggesting that positive
shocks to the dividend yield are associated with higher expectations of future
returns. A portfolio with a high covariance with DYLD, therefore, provides a poor
hedge against a deterioration of future growth opportunities. Assuming that
(y— 1X1 + ¢/(o — 1)) >0, this means that the price associated with dividend
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yield risk, bpyyp, should be positive. This is, indeed, the case in Panel A of Table
3. On the other hand, Panel A shows that b is also positive and significant,
despite that Appp; is negative. For this reason, the test of the restrictions of
Campbell’s model - that is, Apyip/Poyip = ApteL/PpreL — 15 strongly rejected
by the Wald statistic ( p-value = 0.00).

Despite the rejection of Campbell’s restrictions, Panel B of Table 3 estimates
the Campbell two-factor model under heteroskedasticity (¢ # 0) by imposing the
restrictions of the model directly. Note that Hansen’s, J,, statistic marginally
rejects the two-factor model’s overidentifying restrictions ( p-value = 0.06). The
two-factor model interprets the coefficient of b,, in Panel B as the parameter of
relative risk aversion vy. This estimated coefficient is 8.61 (standard error = 2.36),
and is statistically significant. The model does not allow us, however, to separately
identify the estimate of the elasticity of intertemporal substitution, o .

The estimated size of the coefficient of relative risk aversion, <y, in Panel B is
of the same order of magnitude as the estimates provided by Campbell (1993b).
Campbell uses two alternative samples, a monthly one from 1952 to 1990, and an
annual one from 1871 to 1990. His monthly data set is richer than ours,
comprising a cross-section of 22 stock and 3 bond portfolios, but his estimates are
based on an unconditional specification of the model, making his estimation
problem more manageable. While his model includes proxies for human capital,
he also presents comparable estimates of y under the assumption that the
contribution of human capital to the wealth portfolio is zero. In Campbell’s
monthly and annual samples the estimates of y are 15.6 and 2.7, respectively.

Within the context of the consumption CAPM, Mehra and Prescott (1985)
claim that the coefficient of relative risk aversion that explains the average
historical return on the stock market is implausibly high. Black (1990) and Kandel
and Stambaugh (1991) subsequently point out that the belief (arising from static
CAPM estimates as in Friend and Blume, 1975) that the true coefficient should be
lower may be erroneous. Traditional estimates assumed, for example, that stock
returns are i.i.d., when in reality stock returns may exhibit mean reversion. Mean
reversion reduces the riskiness of the stock market and, within the context of the
static CAPM, results in larger estimates of the coefficient of relative risk aversion,
Kandel and Stambaugh show that typical values of y ought to be about 30, rather
than 3 (as Friend and Blume suggest). Note that in both our specification and
Campbell’s, V;, reflects temporal dependence in stock returns and, hence, our
estimate of y is immune to the criticism of Black and Kandel and Stambaugh.

Panel B of Table 3 also tests the hypothesis that the Campbell model collapses
to a one-factor model. This is equivalent to the restriction that by = b, — 1. This
restriction is tested in Panel B using the Wald statistic and is strongly rejected
( p-value = 0.00). This rejection constitutes perhaps indirect evidence that the
conditional covariances of the model are time-varying and, hence, justifies our use
of GMM. For completeness, in Panel C, we impose the restriction bg. = by, — 1
directly and estimate Campbell’s one-factor model, which obtains when o= 1.
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Now, the estimate of the coefficient of risk aversion (y) is given by b,, = 1.44
(standard error = 1.03), and is no longer significant. Also, the vector A implied by
the VAR parameter estimates deviates substantially from its OLS counterpart
presented earlier in Table 2.

4.2. Models that use consumption data

In order to compare Campbell’s model with other empirical asset pricing
models, we are required to construct conditional covariances of portfolio real
returns with consumption growth. To construct conditional covariances of con-
sumption growth with asset returns, we could estimate a model of consumption
growth unrelated to the earlier three-variable VAR. However, enlarging the earlier
VAR model to include consumption growth facilitates our intended comparison
because it provides a general four-factor framework that nests all relevant models.
Note also that excluding measured consumption from the list of explicitly priced
factors of the Campbell model while including it as a state variable in the VAR
does not violate the spirit of that model. Although the observed consumption data
series may not represent true consumption in Campbell’s framework, it may still
be used as a state variable that predicts the present value of future investment
opportunities. The significance of consumption in helping to predict the T-bill
yield in the VAR estimated in Panel C of Table 2 justifies this approach in part.

In Table 4, we estimate various asset models using the four-variable (RRET,
DYLD, DTBL, and GCON), first-order VAR system. We use the lagged values of
the same variables plus a constant as the set of instruments in the GMM
procedure. This set of instruments results in 70 (=[10 + 4] X 5) orthogonality
conditions. In Panel A, we estimate an unrestricted four-factor model, including
measured consumption growth as an explicitly priced factor. In this model, the J,
statistic marginally fails to reject the model’s overidentifying restrictions ( p-value
=0.11). As in Panel A of Table 3, however, bpy,p and bprg. share the same
sign and are statistically significant, while Ay, and Aprg, are of opposite sign.
This suggests a rejection of the restrictions of the Campbell model -
Apyin/ boyip = Aptel/ PoreL = Accon/ Pocon — Which is confirmed by the Wald
statistic (@, (2) = 15.3; p-value = 0.00) in Panel A. Interestingly, measured con-
sumption risk is not significantly priced in the four-factor model.

In Panel B, we again estimate Campbell’s two-factor model under het-
eroskedasticity (¢ # 0). Both factor prices b,, and by, are positive and signifi-
cant, yielding a value of 4.72 (standard error = 1.83) for the coefficient of relative
risk aversion. Unlike in Table 3, the overidentifying restrictions of the model are
not rejected ( p-value = 0.15). The test of the restriction of the Campbell two-fac-
tor model under homoskedasticity (i = 0) — that is by = b,, — 1 — again rejects
strongly ( p-value = 0.00). Nevertheless, Panel C imposes the restriction by = by,
— 1 and finds a coefficient of relative risk aversion equal to 1.60, which is
statistically insignificant. Moreover, the J, statistic marginally rejects the overi-
dentifying restrictions of the model ( p-value = 0.07).
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Treating measured consumption as an explicitly priced factor, Panel D presents
the results of estimates from the (approximate) Epstein—Zin-Weil two-factor
model. The Epstein—-Zin—Weil two-factor model does not perform as well as
Campbell’s two-factor model on both statistical and economic grounds. Unlike
Campbell’s two-factor model in Panel B, the J, statistic strongly rejects the
overidentifying restrictions of the Epstein—Zin—Weil model ( p-value = 0.02).
However, both factors are statistically significant. ' The parameter estimates in
Panel D can be used to uncover estimates of vy and o. From Eq. (3), recall that
plim(b,,) =1 — 6 and plim(bg.) = 6/, where §=(1 —y)/(1—1/0). 1t fol-
lows that the implied estimate of o, the elasticity of intertemporal substitution is
roughly 0.03 (s.d. = 0.03) and not significantly different than zero. The implied
estimate of the coefficient of risk aversion, vy, is 276.3 (= b,, + bs.) with an
associated standard error of 25.42.

In Panel E we estimate a general model which nests the Campbell two-factor
model under heteroskedasticity and the Epstein—Zin—Weil model as special cases.
The model effectively augments the Campbell model with the measured consump-
tion factor, resulting in an empirical model that is not the consequence of any
theoretical model. Note that in the presence of the Campbell model, the coefficient
on the measured consumption factor is not significant (bgc oy = 13.03, s.d. = 32.58)
while the risk factors in the Campbell model continue to be priced marginally
significantly.

Panel F estimates two empirical models based on the consumption CAPM and
the static CAPM, respectively. The consumption CAPM can be thought of as a
restriction on the two-factor Epstein—-Zin—Weil model where y=1/0. The
estimate of the parameter of relative risk aversion is 122.4 (s.d. = 12.0), and is
highly significant. Given Mehra and Prescott’s equity premium puzzle (Mehra and
Prescott, 1985), the finding that the estimate of 7y here and in Panel D is large may
not come as a surprise. The estimate of vy is several standard deviations larger than
the value that some authors (e.g., Kandel and Stambaugh, 1991) suggest is
reasonable. Apparently, when estimating consumption-based asset pricing models
using actual consumption data, the low intertemporal variability in the consump-
tion growth requires a larger risk aversion parameter to explain the cross-sectional
and time-series variation in risk premia. * The larger estimate of the coefficient of
relative risk aversion, vy, in the consumption-CAPM and in the Epstein—Zin—-Weil
models is consistent with the estimates in Wheatley (1988) and Breeden et al.
(1989). Wheatley uses a monthly sample from 1959 to 1981 and examines 40

' This evidence contrasts with the results in Mankiw and Shapiro (1986). They ran the empirical

equivalent of the Epstein—Zin—Weil mode! and found that market beta is a priced factor, with a large
positive ¢-statistic, but that consumption beta is not. Mankiw and Shapiro restricted their sample of
firms to those present in the CRSP tapes every year during the period 1959-1982. Fama (1991)
postulates that such sample selection leads to survival bias.

% Breeden et al. (1989) argue that temporal aggregation biases the estimate of y upward.
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stock portfolios ranked annually by the previous five-year return, a government
bond portfolio, and a corporate bond portfolio. He estimates a y of 139 when the
consumption data include only non-durables, and a y of 324 when the consump-
tion data, like ours, include non-durables plus services. Breeden et al. examine
twelve industry portfolios, the CRSP value-weighted portfolio, and four bond
portfolios over the period 1959-1982. Breeden et al. do not provide explicit
estimates of vy, but one can derive an implied estimate from their Table 1 (p. 240)
and Table 5 (p. 253). Ignoring the serial correlation of consumption growth, their
implied y estimate is approximately 145 with quarterly data, and 335 with
monthly data.

Wheatley suggests that high estimates of ¥y may be due to the fact that in the
consumption-CAPM, the coefficient of relative risk aversion is also the inverse of
the coefficient of intertemporal substitution. Our results show that the argument
may have little merit since our estimate of y actually rises from 121 in the
consumption-CAPM to 294 in the Epstein—Zin—Weil model, which does not
impose the restriction y=1/0. The same conclusion may be reached based on
Epstein and Zin’s estimation (Epstein and Zin, 1991). Fama (1991) postulates that
the positive relation between expected returns and consumption betas in Wheatley
and Breeden et al., and their high y estimates, may come primarily from the
spread between bonds (low betas and low average returns) and stocks (high betas
and high average returns). Our evidence here shows that the positive relation
between average return and consumption risk, as well as high estimates of vy, are
equally present in a restricted sample of assets that includes only stocks. A

So far, the combined evidence in favor of Campbell’s model is weak. Although
estimating the model derives what some authors have construed to be reasonable
estimates of the representative agent’s preference parameters, 2 the model fails in
practice to uphold its implied parameter restrictions, which are the main theoretical
contributions of the model. Specifically, the risk associated with innovations in the
state variables is priced in a way that differs from the restrictions that Campbell’s
two-factor (heteroskedastic) model imposes. When we do not include measured
consumption as a state variable, the model’s overidentifying (orthogonality)
conditions are rejected. When we do allow consumption as a state variable in the

2! Contrary to our findings and the findings of Wheatley (1988) and Breeden et al. (1989), Epstein
and Zin (1991) and Hansen and Singleton (1983) provide estimates of y that are close to unity
(logarithmic preferences). Both of these papers, however, estimate y within a model that relates the
level of consumption growth to the level of asset returns. Wheatley provides simulation evidence,
which shows that in such a set-up, measurement error in consumption results in very imprecise
estimates of y and, moreover, severely biases the y estimate downward.

= Estimating a ‘‘low’’ level of the coefficient of risk aversion should not be used in isolation to
judge the economic meaning of an economic model; some recent studies entertain traditionally high
levels of risk aversion (Abel, 1994, Campbell and Cochrane, 1995). We point out our lower estimate of
v in the Campbell model to place it in the context of the earlier literature mentioned above.
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VAR, we find that although the overidentifying restrictions are not rejected, the
parameter restrictions of the two-factor model continue to be rejected. Nonethe-
less, empirical models based on using measured consumption growth as an
explicitly priced factor perform even more poorly, also failing to satisfy the
overidentifying restrictions. Also, a general model which nests both Campbell’s
approach and a consumption risk factor suggests that consumption risk adds no
marginal explanatory power for expected returns over and above Campbell’s
specification.

4.3. Accounting for cross-sectional variation in returns

Any well-specified asset pricing model should account for both the cross-sec-
tional and time-series variation in expected returns. Conversely, a model’s failure
to explain either the cross-sectional or time-series variation in expected returns,
even though it explains the other, may lead to a general rejection of the model.
Thus, in a system of equations which involves both time-series and cross-sectional
elements, general tests of overidentifying restrictions and parameter restrictions
lend little insight into where the model is failing. A natural question that arises is
whether Campbell’s model fails the statistical tests because it cannot adequately
explain the cross-sectional variation in excess returns across the size portfolios,
that is, it cannot explain the “‘size effect’’.

A possible approach is to estimate the system of equations allowing each
portfolio equation to have a different intercept (an additive constant). Typically,
the presence of a significant intercept term provides an alternative specification
test of an asset pricing model (Gibbons et al., 1989). Alternatively, a non-zero
constant term may be interpreted as the outcome of an approximation error in the
linearization. In any case, the presence of significant (non-zero) constant terms
suggests that the included three factors do not provide an adequate representation
of the cross-sectional dispersion of average risk premia. Although there may be no
simple way to rigorously separate the time-series and cross-sectional implications
of the Campbell model (and we do not presume that a model with separate
intercepts can be derived as a general case using Campbell’s framework), intuitive
empiricism suggests that allowing for different intercepts effectively loosens the
requirement that the Campbell model explain both the time-series variation and
the average cross-sectional variation in risk premia.

In Table 5, we re-estimate the models of Table 4 allowing for separate portfolio
intercepts (a,,...,a,,) in each of the ten model equations describing portfolio
returns. As before, we estimate a set of ten portfolio equations plus a four-variable
VAR system (RRET, DYLD, DTBL, GCON) and all models are estimated using
five instruments, the first-lagged values of the state variables in the VAR plus a
constant. This set of instruments results in 70 (=[10 + 4] X 5) orthogonality
conditions.

In Panel A, we estimate the unrestricted four-factor model. The results contrast
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with the model of Panel A in Table 4. First, the J; statistic reveals that the
overidentifying restrictions are not rejected ( p-value = 0.24). Secondly, the price
attached to DTBL risk is negative, which is consistent with the negative (albeit
insignificant) estimate of the risk weight Anrg, implied from the VAR. As a
result, we marginally fail to reject the test of the parameter restrictions implied by
Campbell’s two-factor model under heteroskedasticity ( p-value 0.10). A test of
the null hypotheses that the estimated additive constants are equal to one another
(or all equal to zero) rejects strongly, suggesting that the four-factor model cannot
account for the size effect.

In Panel B, we impose the restrictions of the Campbell two-factor model under
heteroskedasticity directly, while allowing for separate additive constants. Again,
the model marginally fails to reject the overidentifying restrictions ( p-value 0.16).
Estimates of the portfolio intercepts and corresponding #-statistics are unreported
but are similar to those of Panel A. Tests of the restrictions on the portfolio
intercepts suggest that the null of equality and the null that they are all zero are
rejected. The table suggests that much of the cross-sectional variation in asset
returns can be explained by the market factor V,,,, since allowing the portfolios to
have separate intercepts greatly reduces the price of market risk b,. Note,
however, that b, the price attached to the second risk factor V;, remains
positive and significant, suggesting that it continues to play a role in the intertem-
poral variation of expected returns.

Panel C estimates the Campbell model imposing the restriction that bg. =1 —
b,,. Here, we find a coefficient of relative risk aversion equal to 7.86, which is
both reasonable and statistically significant. However, statistical tests marginally
reject the overidentifying restrictions of the Campbell model.

The Epstein—Zin—Weil two-factor model with actual consumption data is
estimated in Panel D of Table 5. Hansen’s J; statistic marginally rejects the
overidentifying restrictions of the model, and J, is larger in Panel D than in Panel
B, suggesting that the two-factor Campbell model adheres more closely to the
orthogonality conditions. However, both factors in the Epstein—Zin-Weil model
are positively priced and significant, with an implied estimate of y equal to
by + bgeon = 95.74 (standard error = 19.74). The implied estimate of the elastic-
ity of intertemporal substitution remains close to zero (o= (1 —by)/bgcon =
—0.053).

Panel E presents the estimates of a three-factor model that augments the
two-factor Campbell model with the measured consumption factor. Observe that in
contrast to Panel E of Table 4, the consumption factor has a significant positive
price; the Campbell two-factor model does not remove the explanatory power of
the measured consumption factor in the augmented model. Finally, Panel F
estimates the specification of the static CAPM and the consumption CAPM. As
before, Hansen’s J; statistic continues to marginally reject the overidentifying
restrictions of each model.
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5. Summary and conclusions

The paper brings together under the unifying framework of Campbell’s model
two separate and extensive literatures in finance (Campbell, 1993a): the literature
on the predictability of aggregate stock returns, and the literature on multiple-fac-
tor models of asset pricing with explicit macroeconomic factors. This unification
occurs because Campbell’s model substitutes innovations in consumption out of
the model, replacing them with innovations in economic variables that help predict
the return on invested wealth. Our analysis isolated two state variables that are
robust predictors of quarterly real stock returns, the dividend yield and the nominal
T-bill yield. To complete the specification we added the real aggregate stock
return and consumption growth, leading to a total of four state variables. In the
manner suggested by Campbell, we then used these variables as priced risk factors
to explain the time-series and cross-sectional variation in the risk premia of ten
size portfolios of U.S. stocks. The covariances of the portfolio real returns with
innovations in these state variables serve as the factors in our multiple-factor
framework.

Our empirical analysis examined the performance of both the unrestricted
multi-factor model and several restrictive versions of the conditional form of
Campbell’s model, most notably: (1) the two-factor Campbell model under
heteroskedasticity and (2) the one-factor Campbell model. We also compared the
performance of these models to empirical models which use consumption as an
explicitly priced risk factor, such as the two-factor model of Epstein and Zin,
1989, 1991 and Weil, 1989, 1990, and one-factor models such as the static CAPM
and the consumption CAPM. In the course of the analysis, we made numerous
assumptions, such as the assumption that the difference between the nominal T-bill
yield and the actual inflation rate is a risk-free real interest rate, and the
assumption that wealth is proxied by the market portfolio. These assumptions are
not directly related to Campbell’s basic proposal, which remains a theoretical
construct. The assumptions were made to facilitate estimation, however, and to
allow comparison with other studies.

The initial results do not provide support for Campbell’s proposal to substitute
consumption out of the representative-agent model. We find that a high dividend
yield is associated with higher future investment opportunities, and portfolios that
covary positively with the dividend yield are compensated with a higher expected
return. However, a high T-bill yield is typically associated with lower future
investment opportunities, yet portfolios that covary positively with the T-bill yield
also command a higher expected return. This is inconsistent with the restrictions of
Campbell’s model, and formal tests show that the parameter restrictions of the
two-factor Campbell model are rejected. However, the specification tests of
Hansen (1982) reveal that compared to empirical models that explicitly price the
consumption factor, the Campbell model more closely adheres to the implied
orthogonality conditions. When consumption is introduced as a state variable, the
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model’s overidentifying orthogonality conditions are upheld, but the estimation
again leads to a rejection of the theoretical model’s implied parameter restrictions.
Compared to models that explicitly price consumption risk, Campbell’s two-factor
model leads to lower implied estimates of the coefficient of relative risk aversion.
Apparently, the variability of ‘‘true’’ consumption - implied by the joint variabil-
ity of the state variables that substitute consumption out of the representative agent
model and the sensitivity parameters A, — is much higher, leading to lower (and
possibly more realistic) values of the parameter of relative risk aversion (see also
Campbell, 1993b).

Augmenting the model by allowing a separate additive constant for each
portfolio in the empirical model helps focus the subsequent analysis on the
time-series properties of the models. In this case, the estimation reveals that
neither the Campbell model, nor the models based on the explicitly priced
consumption factor explain the ‘‘size’’ effect. Nonetheless, statistical tests using
the augmented empirical model reveal that the parameter restrictions of the
Campbell model are now (marginally) upheld in the time-series. Estimating
Campbell’s augmented two-factor model reveals that the orthogonality restrictions
are not violated, while the augmented model continues to provide lower estimates
of the risk aversion parameter y than models that do not substitute consumption
out of the empirical risk-return relationship. Unlike the augmented Epstein—-Zin—
Weil model and the augmented consumption-based CAPM, the overidentifying
restrictions of Campbell’s augmented two-factor model extended to allow separate
portfolio intercepts are not rejected.

6. For further reading

Fama and French (1988), Ferson (1989) and Poterba and Summers (1988).
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