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Higher initial margin requirements are associated with lower subsequent stock market
volatility during normal and bull periods, but show no relationship during bear periods.
Higher margins are also negatively related to the conditional mean of stock returns,
apparently because they reduce systemic risk. We conclude that a prudential rule for
setting margins (or other regulatory restrictions) is to lower them in sharply declining
markets in order to enhance liquidity and avoid a depyramiding effect in stock prices,
but subsequently raise them and keep them at the higher level in order to prevent a future
pyramiding effect.

Initial margin requirements are official restrictions on the amount of credit
available to investors through brokers and dealers for the purpose of buying
stocks. Currently, investors in the U.S. stock market face an initial margin
requirement of 50%, which means that at least 50% of the value of the
stocks they are buying ought to originate from their own funds. These funds
are deposited with the brokers in the form of cash or securities and act as
collateral against a sudden drop in prices.1

Initial margin requirements were first imposed by Congress with the Secu-
rities and Exchange Act of 1934. At that time, Congress reasoned that credit-
financed speculation in the stock market may lead to excessive price volatility
through a “pyramiding–depyramiding” process [Garbade (1982)]. That is, in
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the absence of broker-enforced margins, optimistic investors could borrow
large amounts of funds and bring stock prices up to levels unjustified by
economic fundamentals. This price rise could subsequently feed on itself if
speculators were to use their increased wealth to buy more stocks on margin,
creating a pyramiding effect. Prices, however, could unravel very fast, creat-
ing a depyramiding effect if, in the case of some adverse news, brokers were
to ask for additional collateral. If some speculators lacked the requested mar-
gin funds, brokers would sell their stocks driving prices down further. This
outcome would generate further calls for collateral, more liquidations, and
additional price declines.

From 1934 to 1974, the Federal Reserve, which has jurisdiction over the
appropriate level of margin requirements, changed the initial margin require-
ment 22 times. The Federal Reserve’s rationale for changing margins can
be found by tracing its decisions through official documents and/or by esti-
mating a reaction function [Hardouvelis (1990)]. The Federal Reserve raised
margins when it saw signs of “excessive” speculative activity, such as rising
stock prices and rising margin credit that appeared unusual. It decreased mar-
gins when it thought that the factors which led it earlier to increase margins
ceased to exist. Since 1974, however, the Federal Reserve has kept the initial
margin requirement constant. This inaction may reflect the belief that the
most important role of margins is preventive, i.e., that the existence of mar-
gins alone is sufficient to deter destabilizing speculation and, thus, changing
the margin level would have only a minor impact. The inaction, of course,
may also reflect an increased awareness by the Federal Reserve and the eco-
nomics profession in general that the primary responsibility of a central bank
is the stability of the overall price level, and such stability is accomplished
by targeting the overall quantity of credit, not by intervening in the allocation
of credit between the stock market and alternative users of funds.

Since 1974, interest in the active use of margin requirements has been
renewed twice, once following the stock market crash of October 1987, and
a second time in the mid and late 1990s, concurrently with the rapid rise in
the U.S. stock market; recall, for example, Alan Greenspan’s infamous 1996
reference “irrational exuberance.” The crash of 1987 reminded economists of
the crash of 1929. Both episodes took place at times during which investors
could borrow large amounts of funds with little official restriction. In 1929,
there was no margin regulation. In 1980s and 1990s, the cash margin reg-
ulation was circumvented by the existence of futures and options contracts
on the S&P 500 that allowed investors to leverage themselves owning very
little capital of their own. At the time of the crash, these futures contracts
had a margin requirement which was approximately 5% of their value. The
sixty-year-old question naturally arose once again: To what extent do low
margins increase systemic risk, that is, lead stock prices to levels not justi-
fied by economic fundamentals and hence make the stock market vulnerable
to crashes?
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The question of market vulnerability to crashes and the role of margins
is a difficult one because of the lack of a precise measure of vulnerability.
Ex post measures of realized market “turbulence” cannot match exactly the
ex ante concept of vulnerability or fragility, which depends on the proba-
bility of market disruptions rather than the actual occurrence of disruptions.
Hardouvelis (1990) examined three alternative measures aimed at capturing
market vulnerability: volatility at the annual and monthly frequency whose
purpose was to capture wide swings in stock prices, excess volatility at hori-
zons ranging from one month to five years, and mean reversion of stock
prices at horizons ranging again from one month to five years. He found
a negative relation between margins and all three alternative measures of
market vulnerability, and concluded that the imposition of margin regulation
turned out to be a prudent measure.

The conclusion that official margins reduce systemic risk proved controver-
sial in the post-crash discussions on the appropriate level of futures margins.
It was immediately put under scrutiny by other authors [e.g., Kupiec (1989),
Schwert (1989), Salinger (1989), and Hsieh and Miller (1990)]. These authors
concentrated exclusively on only one of the three measures of market vulner-
ability examined by Hardouvelis, namely that of monthly volatility. Hence,
the original question of the role of margins in reducing the fragility of the
market was narrowed down to the role of margins in reducing actual market
volatility.

If volatility per se is an item of regulatory concern, it would be desir-
able to use more satisfactory statistical models of volatility together with the
full set of available data. Previous authors used end-of-month stock prices
to construct volatility estimates, whereas daily prices are readily available.
Moreover, with the exception of Salinger (1989), they tested for the effect
of margins on volatility using regressions in first-difference form and came
up with substantially different conclusions than those in Hardouvelis (1990),
whose analysis was performed in levels. As shown in this paper, when the
correct model specification is in levels, model estimation based on first dif-
ferences without proper adjustments would lead to misspecified models and
erroneous results.

The first motivation for the present paper is to elaborate on the correct
model specification for margins and volatility and explain why the first dif-
ference specification leads to model misspecification. A second motivation
is to create and utilize more precise measures of the volatility process, by
allowing for a general nonlinear specification and by using more frequent
data on stock prices. A third motivation stems from the possibility of an
asymmetry in the relation of initial margins with volatility, which can orig-
inate from the different roles margins could play during bull, normal, and
bear periods.

This potential asymmetry is an item never investigated in the literature.
Yet while higher margins serve a preventive role during normal times, they
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could become counterproductive once a major disruption takes place because
they reduce liquidity and can exacerbate the ongoing turmoil. Moreover, the
pyramiding–depyramiding process that Congress had in mind when it insti-
tuted margin regulation some seventy years ago was an asymmetric process:
prudential margin regulation was thought to be a tool of avoiding the excesses
of a bull market, thus minimizing the probability of disruptions. Higher mar-
gin requirements were not thought to be a tool of smoothing the effects of
disruptions.

The different role of margins during bear and bull markets must also have
underlined the historical decisions of the Federal Reserve to change the level
of margin requirements. Federal Reserve records indicate, for example, that
while the Federal Reserve raised margins to prevent the excesses of an ongo-
ing bull market, it lowered margins with the intention of simply counteracting
the earlier increase once it believed that the excesses of the earlier bull market
were over [Hardouvelis (1990)].

The rest of the paper is organized as follows. Section 1 presents the empir-
ical analysis using a linear regression framework. Besides exploring the exis-
tence of asymmetries, the section discusses in detail the stationarity issues
that were central to the earlier debate on margin requirements and elabo-
rates on the correct specification of margins and volatility. Section 2 presents
the nonlinear econometric framework, which is based on Nelson’s (1991)
exponential GARCH-in-mean (EGARCH-M) model. This model is a natu-
ral candidate for exploring the possible presence of asymmetries. Section 3
discusses the results of the nonlinear model, when it is estimated over three
alternative horizons: one day, one week, and one month. Section 4 explores
possible hypotheses that can explain the findings. Section 5 summarizes the
empirical findings and presents the main policy conclusion.

1. The Asymmetric Role of Margins:
Linear Regression Analysis

1.1 Data and stationarity issues
The daily sample begins on October 15, 1934, when official margin require-
ments were introduced for the first time, and ends on September 9, 1994. It
contains 15,810 daily observations. The weekly sample contains 3,125 obser-
vations (week ending on October 20, 1934, through week ending on Septem-
ber 2, 1994), and the monthly sample contains 719 observations (October
1934 through August 1994). Stock returns are constructed from the S&P
500 stock index, SPt , using the formula Rt = 100∗ ln(SPt/SPt−1). Note that
returns are expressed in a continuously compounded percentage form and do
not include dividends.

The data on initial margin requirements, Mt , are taken from Hardouvelis
(1990). They are expressed in decimals and, thus, can vary from zero to one.
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Figure 1
Initial margin requirements in the U.S. stock market

Figure 1 presents a plot of Mt . Over the sampling period, official initial mar-
gin requirements were adjusted 22 times. The first official level of margin
requirements in October 1934 was set at 45% �Mt = 0�45�. The current offi-
cial level is 50% and has been in effect since January 1974. The highest level
occurred between January 1946 and January 1947. At that time, the margin
was set at 100%, that is, no broker borrowing was allowed. The lowest level
ever was 40% and was in effect from November 1937 until February 1945.

Being a discrete policy variable, which is constrained to take values from
zero to one, the level of margin requirements cannot be treated as a ran-
dom walk process, i.e., a process with a unit root, because it has a finite
variance. Moreover, from a practical point of view, differencing the margin
series results in a new series full of zeroes, except for 22 instances when
the value is nonzero. Using such a variable as an explanatory variable of
the conditional volatility series is equivalent to testing for temporary blips in
volatility at each instance margins were changed and would make it difficult
to uncover the long-run relationship between level of margin requirements
and volatility.

Although the policy bounds on the level of margin requirements preclude
the presence of a unit root in the margin series, in a finite sample its infre-
quent changes could produce an autocorrelation function similar to one orig-
inating from a stochastic series with a unit root. To check this out, we apply
a simple Dickey-Fuller (1979) test on the margin series. Let Mt denote the
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level of margin requirements at the end of month t and � the first-difference
operator. We estimate the kth-order autoregressive model:

�Mt = a0 +b1Mt−1 +a1�Mt−1 +· · ·+ak�Mt−k+ em� t� (1)

where the lag k�=6� is chosen in order to eliminate any serial correlation
in the residuals, and test the null hypothesis that b1 = 0. As expected, the
infrequent changes in margin requirements make the coefficient b1 close to
zero. The estimate of b1 is −0�0366 and its t-statistic of −3�81 is greater than
the 5% critical value of −2�86.2 Similar results are obtained when applying
the Phillips-Perron (1988) test. We conclude that the unit root hypothesis is
rejected both conceptually and empirically.

Turning to the volatility series, we run Dickey-Fuller (1979) tests at the
monthly frequency, using the standard deviation of daily returns during month
t��d� t . The regression model is as follows:

��d� t = a0 +b1�d� t−1 +a1��d� t−1 +· · ·+ak��d� t−k+ es� t� (2)

where k = 2�6, or 12. The estimated coefficients b1 with their t-statistics
in parentheses are −0�32 �−6�32� for k = 2�−0�23 �−4�29� for k = 6, and
−0�21 �−3�71� for k = 12. The unit root hypothesis is rejected decisively.
Phillips-Perron (1988) tests provide similar rejections. Later, in section 4,
we test again for the presence of unit root in conditional volatility using the
EGARCH-M model at all three frequencies and reach similar conclusions.

The lack of a unit root in both the margin series and the volatility series
suggests that the specification of a model that relates the two variables in lev-
els is a proper one. Nevertheless, the near-unit-root behavior of the margin
series together with the high serial correlation in the volatility series could
produce a “spurious regression” phenomenon between the levels of the two
series, i.e., biased coefficient estimates [Granger and Newbold (1974)]. The
possibility of such spurious results has led previous authors to examine the
relation between volatility and margin requirements in first-difference form.3

In subsection 1.3, we examine this issue in greater detail. To anticipate some
of the results, we find that in the regressions in levels, the spurious regression
phenomenon does not affect our estimates and that estimating the relation-
ship in first-differences can lead to incorrect interpretations of the estimated
coefficients.

2 We have repeated the tests at the daily and weekly frequencies to check the robustness of the rejections. In
the daily sample, k = 23 and b1 = −0�0012 with a t-statistic of −3�13. In the weekly sample, k = 13 and
b1 =−0�0069 with a t-statistic of −3�38. All Dickey-Fuller tests also reject when k = 1.

3 An exception is Salinger (1989), who performs the analysis in levels.

1530



The Asymmetric Relation Between Requirements and Volatility

1.2 Regression analysis in levels
This subsection presents a linear regression analysis of the relation between
volatility and margin requirements in level form. The sampling period ends
in December 1987, instead of September 1994, to facilitate a comparison of
the present results to those of Salinger (1989), Hardouvelis (1989, 1990),
Hsieh and Miller (1990), and others. Nevertheless, the results for the whole
sample are similar. One major difference between the present analysis and the
aforementioned studies relates to the empirical proxy of volatility. Our proxy
of volatility is the standard deviation of daily returns during each month, �d�t .
This is, indeed, a daily volatility measure, sampled every month with no data
overlapping in its construction. By contrast, the above-mentioned studies use
end-of-month stock prices to construct monthly stock returns. Subsequently,
either the absolute value of the monthly return in month t is used as a proxy
for the volatility of month t or a rolling window of N months, say from
t−N + 1 through t, is utilized in order to construct a standard deviation
which is taken to measure the volatility of month t. The data overlapping in
the latter construction generates artificial serial correlation up to order N −1
in the volatility estimate.

Table 1 presents the results of five different regressions in which the depen-
dent variable is the level of volatility, �d�t . The general form of the model is
as follows:

�d� t = �0 +�1�d� t−1 +�2�d� t−2 +�R�Rd� t−1�
+�RRd� t−1 +�M�1Mt−1 +�RMRd� t−1Mt−1 +�t� (3)

The independent variables are: (i) the past monthly values of daily volatility
�d� t−1 and �d� t−2; (ii) the past volatility shock, measured by the absolute
value of the average daily return within the month �Rd� t−1�; (iii) the average
daily stock return of the previous month Rd� t−1, intended to control for the
so-called “leverage” effect on volatility; (iv) the past level of margin require-
ments, Mt−1; and (v) the cross product Rd� t−1Mt−1, intended to capture a
possible asymmetric relation between margin requirements and volatility.

Estimation is performed using the ordinary least squares (OLS) method.
The 95% confidence intervals for the parameters of each regression model,
presented in brackets, ���, are constructed using 10,000 bootstrap samples,
each generated randomly from the empirical distribution of the OLS resid-
uals of the model. The estimated confidence intervals avoid the pitfalls of
the zero autocorrelation assumption, which is implicit in the construction
of the usual OLS standard errors. Autocorrelation is particularly problem-
atic in model 1 [observe the Durbin-Watson (DW) and the Ljung-Box (LB)
statistics], which does not include any lags of the dependent variable. At the
bottom of Table 1, all unit root test statistics reject the null hypothesis of
unit root in the residuals. Given the earlier evidence that volatility is station-
ary, it is not surprising that all these statistics overwhelmingly reject the null
hypothesis.
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In all five models, a second set of statistics is presented, which are con-
structed under the null hypothesis that the independent variables Mt−1�Rd� t−1,
and Rd� t−1Mt−1 are unrelated to volatility �d� t . The main purpose of the exer-
cise is to ascertain whether or not there is a bias in the estimated coefficients
of these variables, originating from the Granger-Newbold spurious regression

Table 1

Estimates Model 1 Model 2 Model 3 Model 4 Model 5

Panel A. Regressions of daily volatility on margin requirements

�0 1�1467 0�3980 0�4590 0�4578 0�4595
�14�9�∗ �5�13�∗ �5�89�∗ �5�88�∗ �5�90�∗

�1�00�1�30� �0�25�0�55� �0�30�0�61� �0�30�0�61� �0�31�0�61�

�1 0�4048 0�3343 0�3323 0�3318
�9�27�∗ �7�23�∗ �7�16�∗ �7�15�∗

�0�32�0�49� �0�25�0�43� �0�25�0�42� �0�25�0�43�

�2 0�1772 0�2024 0�2041 0�2039
�4�50�∗ �5�15�∗ �5�19�∗ �5�18�∗

�0�11�0�26� �0�13�0�28� �0�14�0�29� �0�14�0�28�

�R 0�3220 0�3748 0�3722 0�3744
�2�56�∗ �3�00�∗ �2�98�∗ �2�99�∗

�0�09�0�58� �0�13�0�63� �0�14�0�62� �0�14�0�63�

�R −0�3250 −0�1487
�−4�21�∗ �−0�53�

�−0�47�−0�17� �−0�71�0�39�

bias��R� 0�0002 0�0017
�0�00� �0�01�

{−2�02} {−2�04}

�M�1 −0�5630 −0�1823 −0�2252 −0�2229 −0�2247
�−4�42�� �−1�70�� �−2�11�∗ �−2�09�∗ �−2�11�∗

�−0�81�−0�30� �−0�39�0�03� �−0�43�−0�01� �−0�43�−0�01� �−0�43�−0�02�

bias��M�1� −0�0849 −0�0022 −0�0022 −0�0022 −0�0022
�−0�34� �−0�02� �−0�02� �−0�02� �−0�02�
�−4�60� �−1�95� �−1�95� �−1�95� �−1�95�

�RM −0�5739 −0�3224
�−4�22�∗ �−0�65�

�−0�85�−0�30� �−1�30�0�65�

bias��RM � 0�0002 −0�0027
�0�00� �−0�01�
�−2�02� �−2�08�

R2 0�0299 0�3454 0�3633 0�3635 0�3638
F -value 19�55∗ 83�2∗ 71�9∗ 72�0∗ 59�9∗
DW 0�91 2�02 2�00 2�00 2�01
LB�60� 831�7∗ 51�7 60�7 61�2 61�2

Panel B. Unit-root test statistics for the residuals of the models

Model with a drift: �t =m+b�t−1 +vt
P-P Statistic for H0
b = 1 −14�66∗ −25�49∗ −25�31∗ −25�39∗ −25�35∗
(Cr. value =−2�86)

D-F Statistic for H0
b = 1 −13�60∗ −25�43∗ −25�16∗ −25�25∗ −25�21∗
(Cr. value =−2�86)
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Table 1
(continued)

Estimates Model 1 Model 2 Model 3 Model 4 Model 5

Extended Dickey-Fuller drift and time-trend model: ��t =m+a�t−T /2�+ �b−1��t−1 +
∑
��t−s +vt

F-statistic for H0
�m�a�b�= �0�0�1� 9�154∗ 29�69∗ 28�84∗ 28�29∗ 28�51∗
(Cr. value = 4�68)

F-statistic for H0
�m�a�b�= �m�0�1� 13�68∗ 44�52∗ 43�25∗ 42�42 42�75∗
(Cr. value = 6�25)

The estimated model is

�d� t = �0 +�1�d� t−1 +�2�d� t−2 +�R�Rd� t−1�+�RRd� t−1 +�M�1Mt−1 +�RM �Rd� t−1Mt−1�+�t �

The sample covers the period October 1934 to December 1987 and includes 636 observations. The dependent variable �d� t is
the daily volatility during month t, computed using the standard deviation of daily returns during month t. Its sample mean
is 0�8161% and its standard deviation 0�4753%. Rd� t is the average daily return for month t expressed in percent. It has a
sample mean of 0�0232% and a standard deviation of 0�2114%. �� is the absolute value operator and �Rd� t � has a sample
mean of 0�1594%. Mt is the level of margin requirements at the end of month t, expressed in decimals and has a sample
mean of 0.5873. Parentheses, (.), include t-values and brackets, [.], include 95% confidence intervals constructed from 10�000
bootstrap simulations. Bias (.) denotes the average coefficient constructed from separate 10�000 bootstrap simulations under the
null hypothesis of no relation between the dependent variable �d� t with the relevant independent variable. Curved brackets,
{.}, below the bias statistics include the 2�5% lower cutoff point in the distribution of 10�000 t-statistics generated from the
simulations under the null. Asterisk, ∗ , denotes statistical significance at the 5% level and the symbol � at the 10% level in a
two-tailed test. R2 is the regression R-square, D/W is the Durbin-Watson statistic, and LB(60) is the Ljung-Box  2 statistic
with 60-k degrees of freedom, where 60 is the number of lags in the serial correlation test and k is the number of explanatory
variables in each model. P-P and D-F are the Phillips-Perron and Dickey-Fuller statistics for testing the hypothesis of a unit
root in the residuals of each model.

phenomenon. A description of the bootstrap simulations is contained in the
appendix.

Model 1 presents the simple univariate regression of daily volatility on the
level of margin requirements. Consistent with the earlier literature, the margin
coefficient is negative and statistically significant, indicating that higher initial
margins are associated with lower subsequent volatility. The coefficient of
−0�563 indicates that an increase of margin requirements from 0.5 to 0.6 is
associated with a decline of volatility by 0.0563, or 5.63 basis points. There
is substantial serial correlation in model 1, however. This is evidenced by
both the DW and LB statistics.4

The simulations in model 1, which are run under the null hypothesis that
volatility and margins are unrelated, result in an average coefficient estimate
of −0�0849, denoted in the table as bias ��M�1�. This estimate is approxi-
mately seven times smaller than the OLS coefficient of −0�563 and has a
very small t-value. Thus, the bias is neither statistically nor economically
significant. Nevertheless, the simulations also show that inferences from the
OLS t-statistics are misleading. A t-statistic of −4�42, as the one of coeffi-
cient �M�1, would ordinarily indicate strong statistical significance. Yet our
simulations under the null show that the 2.5% lower cutoff point of the

4 The Ljung-Box statistic for N lags is a  2 statistic and is calculated using the formula LB�N � = T �T +
2�

∑N
j=1 r

2
j /�T − j�, where rj is the jth-order sample autocorrelation of the series and T is the sample size,

see Ljung and Box (1978).
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distribution of t-statistics is −4�60, instead of the expected level of −1�96.
Thus the estimate of �M�1 in model 1 is not statistically significant at the
5% level (in a two-tailed test). It is only statistically significant at the 10%
level because the lowest 5% cutoff point of the distribution of t-statistics,
not reported in Table 1, is −3�97. We conclude that model 1 does not have
a serious bias problem, but it does have an inference problem, attributed to
serial correlation in the residuals or any other model misspecification.

Model 2 enhances model 1 by adding two lags of volatility and one
lag of the volatility shock, proxied by �Rd� t−1�. These variables absorb the
serial correlation in the residuals of model 1, as evidenced by both the DW
and the LB statistics, which are now statistically insignificant. The mar-
gin coefficient in model 2 continues to be negative, but decreases in size
from −0�563 to −0�1823. However, the presence of positive autoregressive
terms imply that, following a permanent change in margins, the cumula-
tive long-run association between margins and volatility remains approxi-
mately the same. This long-run association is �M�1/�1−�1−�2�=−0�1823/
�1−0�4048−0�1772�=−0�4361, a number not far from the estimated coef-
ficient of −0�563 in model 1.

The bootstrap simulations for model 2, run under the null hypothesis that
volatility and margins are unrelated, result in an average coefficient estimate
for the bias of −0�0022, which is orders of magnitude smaller than the
OLS coefficient of −0�1823. Hence, there is no evidence that the Granger-
Newbold spurious regression problem affects the OLS coefficient estimate.
The same conclusion is reached in the remaining models 3, 4, and 5, not
only for the coefficient �M�1, but also for the coefficients �R and �RM . Their
bias is infinitesimal and, of course, statistically insignificant.5 Moreover, the
lowest 2.5% cutoff point in the distribution of t-statistics under the null is
−1�95 for �M�1 and slightly below −2�0 for �R and �RM . Hence, inference
from the OLS t-statistics is not affected by the Granger-Newbold problem.

The weak statistical significance of the margin coefficient in model 2 could
be attributed to the lack of appropriate control variables in the regressions
[Hardouvelis (1990)]. Variables like margin credit or the recent movement in
stock prices influence the Federal Reserve’s decision to alter margin require-
ments and could also be correlated with volatility, biasing the estimate of
coefficient �M�1. Similarly, the relationship between margin requirements and
volatility may be asymmetric. Such an asymmetry would imply that models
1 and 2 would be misspecified even if they were enhanced by other control
variables.

Although the focus of the paper is on a possible asymmetric relation
between margins and volatility, in model 3 we control for one of the variables

5 This result is not surprising. In discussing possible remedies for the spurious regression bias, Granger and
Newbold propose including in the regression equation the lagged dependent variable, which is exactly what
models 2–5 do.
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to which the Federal Reserve reacted, the average daily stock return of the
previous month, Rd� t−1. A well-known result in the finance literature is that
lagged stock returns are also associated with current volatility and the corre-
lation is negative. This result is confirmed in model 3 of Table 1, where the
coefficient �R is negative and statistically significant. Black (1976) argues
that lower returns increase financial leverage and, hence, future volatility
rises. Christie (1982) finds evidence consistent with the leverage explana-
tion. Another interpretation is that the expectation of higher future volatility
increases the risk premium driving down current stock prices [see Campbell
and Hentschel (1992) for empirical support]. Duffee (1995) claims the asso-
ciation is a reflection of the skewness of returns, while Gallant, Rossi, and
Tauchen (1992) show that the negative association is a tail phenomenon—
namely, it is particularly evident following large price changes.

The inclusion of Rd� t−1 in the regression of model 3 boosts slightly the
coefficient �M�1 of margin requirements, making it statistically significant.
The long-run association between margins and volatility is now �M�1/�1−
�1 − �2� = −0�2252/�1 − 0�3343 − 0�2024� = −0�4861, implying that the
long-run elasticity of volatility with respect to changes in initial margin
requirements, that is, the percentage change in volatility with respect to a per-
centage change in margin requirements, is approximately −0�35 =−0�4861
�0�5873/0�8161�, where 0.5873 is the average margin requirement in the
sample and 0.8161 is the average daily volatility.

Model 4 tests for the presence of an asymmetry according to the sign and
size of the previous month’s price change. It enhances model 2 through the
inclusion of the cross product Rd� t−1Mt−1, instead of Rd� t−1. The association
between margins and volatility is now reflected in the composite coefficient
�M�1+�RMRd� t−1 and, thus, is allowed to vary according to both the sign and
the size of the earlier stock price change. Observe that both coefficients �M�1

and �RM are negative and statistically significant. The statistical significance
of �RM establishes that the relation of margins to volatility is nonlinear, a
result inline with the later EGARCH-M results. The negative sign of �RM
implies that the negative sensitivity of volatility to margins gets larger in
absolute terms, the higher (the more positive) the previous periods return.6

As a matter of fact, during major stock market downturns, the relationship of
initial margins to volatility could even be positive. For margin requirements
equal to the current level of 0.5 (or 50%), this anomalous behavior can occur
for the cases when the average daily return for a month, Rd� t−1, is less than
−0�3884%, so that the coefficient −0�2229−0�5739Rd� t−1 > 0. About 25.4%
of the returns in the daily sample are less than −0�3884%, indicating that
the margin coefficient could be reversing its sign quite frequently.

6 In an alternative formulation of the asymmetry, we separated the months with positive and negative Rd� t−1.
When Rd� t−1 > 0��M�1 = −0�29, but when Rd� t−1 < 0��M�1 = −0�10 and their difference is statistically
significant.
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Since the variability of margin requirements is small, one may wonder
whether the results of asymmetry in model 4 represent simply another man-
ifestation of the “leverage” effect of model 3. It is possible that the infor-
mation in the cross product Rd� t−1Mt−1 is dominated by the information in
Rd� t−1. After all, models 3 and 4 provide similar fits to the data, as evidenced
by the similarity of their respective R2s. To investigate this issue, we include
in model 5 both variables Rd� t−1 and Rd� t−1Mt−1. If the leverage effect dom-
inates the information in Rd� t−1Mt−1, then �R should be significant and �RM
insignificant. Conversely, if the information in the cross product Rd� t−1Mt−1

represents mainly an asymmetry effect, then �RM should continue being sig-
nificant despite the presence of Rd� t−1 in the regression. We find that due to
multicollinearity, neither �R nor �RM is significant, although both continue
to be negative as before. We conclude that both the leverage effect and the
asymmetry effect are behind the information in Rd� t−1Mt , but neither can be
detected very clearly when the other is present in regression models.

1.3 Regressions in levels or first-differences? A comparison
The earlier battery of tests showed that the correct specification of the model
is in levels. In addition, the bootstrap simulations showed that the spurious
regression phenomenon of Granger and Newbold (1974) does not affect the
estimated coefficients, neither does it affect inferences when lagged depen-
dent variables are included in the regressions. Nevertheless, because previous
authors utilized the specification in first differences, which gave little evi-
dence of a negative relationship between volatility and margins, it is worth-
while to estimate the relationship in first-difference form in order to compare
the two sets of results and isolate the source of their different empirical
assessments.

To facilitate the comparison, we pick model 3 of Table 1, which incorpo-
rates the leverage effect, and enhance it by adding a superfluous second lag
of margin requirements, Mt−2, as an explanatory variable:

�d� t = �0 +�1�d� t−1 +�2�d� t−2 +�R�Rd� t−1�
+�RRd� t−1 +�M�1Mt−1 +�M�2Mt−2 +�t� (4)

where the various symbols are as defined previously. Recall that the Mt series
is highly autocorrelated. Its first-order autocorrelation coefficient is 0.9722
in the monthly sample. Hence, severe multicollinearity exists between Mt−1

and Mt−2 in the regression Equation (4). The coefficient estimates for the
first five terms of Equation (4), with their t-statistics in parentheses, are �0 =
0�4714 �5�74���1 = 0�3302 �7�17���2 = 0�2089 �5�43�� �R = 0�3757 �3�20�,
and �R = −0�3368 �−4�47�. These estimates are very close to those in
Table 1, model 3. The estimated coefficients for the lagged values of margins
are �M�1 = 0�6764 �1�56� and �M�2 = −0�9259 �−2�16�. Notice that while
multicollinearity pushes the two coefficients in opposite directions, their sum
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�M�1 +�M�2, which represents the cumulative short-run association of mar-
gins with volatility, is equal to −0�2495, a number very close to the �M�1

estimate of −0�2252 of model 3 in Table 1. Similarly, the long-run associa-
tion equals ��M�1 +�M�2�/�1−�1 −�2�=−0�2495/�1−0�3302−0�2089�=
−0�5413, a number close to −0�4861 of model 3 in Table 1.

Equation (4) can be transformed into a mathematically equivalent for-
mulation, in which the volatility and the margin variables appear in first-
differences, as follows:

��d� t = �0 + ��1 +�2 −1��d� t−1 −�2��d� t−1 +�R�Rd� t−1�+�RRd� t−1

+ ��M�1 +�M�2�Mt−1 −�M�2�Mt−1 +�t� (5)

where � denotes the first difference operator. Observe that in addition to the
lagged first differences in margin requirements and volatility, Equation (5)
includes the lagged levels of both margin requirements and volatility as
regressors. When the correct specification is in levels, as it is in our case,
but the estimation is performed in first-differences, omitting these lagged
levels from the regression would result in misspecification error. Previous
authors, who employed first difference specifications to investigate the rela-
tionship between margins and volatility, omitted these additional level terms
and, hence, estimated misspecified models. Observe that the omitted regres-
sors are reminiscent of the error correction terms of cointegrated systems.
Hence, previous authors have a misspecification problem similar to the one
faced by investigators who ignore the error correction term in co-integrated
systems [Engle and Granger (1987)].

Table 2 presents regression estimates for special cases of Equation (5).
Models 1 and 2 resemble those used previously to investigate the relation-
ship between margins and volatility because they exclude the lagged levels
of margin requirements and volatility as additional regressors. The LB tests
clearly indicate that there is unexplained serial correlation in the residuals—
due to the exclusion of �d� t−1—which is itself indicative of model misspec-
ification. In these models, the coefficients for �Mt−1 are positive and, in
model 2, statistically significant as well! An investigator who would esti-
mate models 1 and 2 of Table 2 would wrongly conclude that the relation-
ship between margin requirements and volatility is positive, when in fact,
according to Equation (5), the estimated coefficient is actually the coefficient
−�M�2, denoting—even in these misspecified models—a negative association
between margins and volatility.

Model 3 of Table 2 includes the lagged levels of margin requirements and
volatility and, thus, provides a more appropriate specification of the relation-
ship between margins and volatility. Note that the results are identical to those
of Equation (4). The sum of the coefficients of Mt−1 and Mt−2��M�1 +�M�2,
is equal to −0�2495, exactly the implied number from the estimates of Equa-
tion (4) which, in turn, are close to the results of the more correct specifica-
tion of model 3 in Table 1, which does not include the superfluous second
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Table 2
Regressions of changes in daily volatility on margin requirements: levels vs. first differences

Estimates Model 1 Model 2 Model 3

�0 0.0011 0.0403 0.4714
(0.06) (1.59) �6�05�∗

[−0.03, 0.04] [−0.01, 0.09] [0.32, 0.62]
�1 +�2 −1 −0.4609

�−10�8�∗
[−0.54, −0.37]

−�2 −0.3648 −0.2089
�−9�17�∗ �−5�31�∗

[−0.44, −0.29] [−0.29, −0.14]

�R −0.2253 0.3757
�−1�86�� �3�01�∗

[−0.45, 0.02] [0.14, 0.63]

�R −0.1273 −0.3368
(−1.57) �−4�36�∗

[−0.29, 0.03] [−0.49, −0.18]

�M�1 +�M�2 −0.2495
�−2�33�∗

[−0.45, −0.03]

−�M�2 0.7665 1.0473 0.9259
(1.49) (2.19)∗ (2.09)∗

[−0.24, 1.79] [0.10, 2.00] [0.05, 1.77]

R2 0.0035 0.1453 0.2800
F -value 2.23 26.8∗ 40.8∗
DW 2.72 2.12 1.99
LB(60) 124.2∗ 97.1∗ 60.2

The general regression model is

��d� t = �0 + ��1 +�2 −1��d� t−1 −�2��d� t−1 +�R�Rd� t−1�+�RRd� t−1 + ��M�1 +�M�2�Mt−1 −�M�2�Mt−1 +�t �

where � denotes the first difference operator. The above model originates from an algebraic transformation of the following
regression equation in levels:

�d� t = �0 +�1�d� t−1 +�2�d� t−2 +�R�Rd� t−1�+�RRd� t−1 +�M�1Mt−1 +�M�2Mt−2 +�t �

which adds a superfluous second lag of margin requirements, Mt−2 , on the regression equation of model 3, Table 1. See the
notes of Table 1 for variable definitions and other explanations.

lag in margin requirements. Thus, it is possible to approximately replicate the
results of regressions in levels when one runs the models in first differences.
However, an investigator who runs regressions in first differences without the
benefit of Equation (5) would most likely omit the lagged levels of volatility
and margin requirements. Hence, estimating the relationship between margin
requirements and volatility in first differences can lead to serious misinter-
pretations of the estimated coefficients. The true relationship between margin
requirements is detected clearly and easily only from regressions in levels.

1.4 Is there an asymmetric relation across bull
and bear markets?

In this subsection we extend our investigation into the possible existence
of an asymmetric relation between margin requirements and stock market
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volatility by separating out periods of rising stock prices, the so-called “bull”
markets, and periods of declining stock prices, i.e., “bear” periods. Our earlier
analysis examined the possibility of an asymmetry based on the magnitude
and sign of the price change of the previous month. However, a bull or a bear
market is a period of consecutive monthly increases or decreases in stock
prices whose horizon is perceived to last well beyond one month. Indeed, in
our present analysis we examine horizons of three months and longer.

We adopt as a definition of a bull or a bear market the following: a period
during which there are at least N consecutive monthly stock returns with the
same algebraic sign. Because there is no widely accepted definition of a bull
or a bear period, the horizon N of our analysis takes four possible values,
N = 3�4�5, and 6 months. We thus allow the readers to focus on the results
that best fit their intuition of a bull or a bear market.

Table 3 presents some descriptive statistics for these periods. In the case
of N = 3, there are 44 disjoint “bull” periods, i.e., periods containing at
least three consecutive positive monthly returns. These periods contain 220
monthly observations, or 34.6% of the sample. The bear periods are 31 and
the number of observations falling into these periods is 123, or 19.4% of
the sample. The “normal” periods, i.e., periods with at most two consecutive
monthly returns with the same algebraic sign, are 293 �=636−220−123�,
or 45% of the sample. Observe that as the horizon N increases, the number
of bull and bear periods (as well as the number of observations in them)
decline. At the longest horizon we examine, the horizon of six months, the
bull periods are 16 and the bear periods 5 and, together, they cover only
24.7% of the sample.7

To check for a possible asymmetry effect across bull and bear periods, we
define two dummy variables, BULLt and BEARt , which take the value of
unity during bull and bear periods respectively and the value zero otherwise.
Subsequently, we include the cross products BULLtMt−1 and BEARtMt−1 as
additional regressors to model 3 of Table 1. Model 3 was chosen because it
controls for the leverage effect. The regression equation takes the form:

�d� t = �0 +�1�d� t−1 +�2�d� t−2 +�R�Rd� t−1�+�RRd� t−1

+�M�1Mt−1 +�MBULLBULLtMt−1 +�MBEARBEARtMt−1 +�t� (6)

7 We have also utilized an alternative definition of bull and bear markets based on excess stock returns, defined
as deviations of monthly returns from their overall sample mean. For each horizon N , this alternative definition
provides fewer bull periods and more bear periods. The results are qualitatively similar. We prefer the definition
based on total returns, as opposed to excess returns, because excess returns can be defined vis-à-vis a variety
of benchmarks. We also checked the sensitivity of the results by replacing the unit values of the first one
(case N = 3) or two observations (cases N = 4�5, and 6) of the BEARt or BULLt dummy variables in each
bull and bear segments with zero. This was done in order to isolate periods in which the underlying presence
of a bear or bull market were already incorporated into the market expectations. The results are qualitatively
similar.
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Table 3
Margin requirements and volatility across bull and bear markets

N = 3 N = 4 N = 5 N = 6

BULL nobs 220 (34.6%) 169 (26.6%) 129 (20.3%) 124 (19.5%)
BULL periods 44 27 17 16
BEAR nobs 123 (19.4%) 72 (11.3%) 48 (7.6%) 33 (5.2%)
BEAR periods 31 14 8 5

�0 0.4829 0.5021 0.5056 0.4960
�6�30�∗ �6�47�∗ �6�46�∗ �6�29�∗

[0.33, 0.63] [0.35, 0.65] [0.35, 0.66] [0.34, 0.65]
�1 0.3204 0.3201 0.3215 0.3286

�7�03�∗ �6�98�∗ �6�99�∗ �7�11�∗
[0.24, 0.41] [0.24, 0.42] [0.24, 0.41] [0.24, 0.42]

�2 0.2043 0.1930 0.1936 0.1955
�5�29�∗ �4�97�∗ �4�97�∗ �4�98�∗

[0.14, 0.28] [0.12, 0.27] [0.12, 0.27] [0.13, 0.28]
�R 0.3991 0.4027 0.3901 0.3916

�3�25�∗ �3�26�∗ �3�15�∗ �3�14�∗
[0.17, 0.65] [0.17, 0.65] [0.16, 0.63] [0.16, 0.65]

�R −0�2278 −0�2504 −0�2682 −0�2876
�−2�90�∗ �−3�18�∗ �−3�41�∗ �−3�64�∗

�−0�38�−0�07� �−0�41�−0�09� �−0�42�−0�12� �−0�44�−0�14�
�M�1 −0�2780 −0�2918 −0�2949 −0�2771

�−2�59�∗ �−2�75�∗ �−2�76�∗ �−2�57�∗
�−0�48�−0�06� �−0�49�−0�08� �−0�51�−0�08� �−0�48�−0�06�

�MBULL −0�0992 −0�0838 −0�0706 −0�0765
�−1�75�� �−1�37� �−1�03� �−1�10�

�−0�21�0�01� �−0�20�0�04� �−0�20�0�08� �−0�21�0�07�
�M�1 +�MBULL −0�3771 −0�3756 −0�3655 −0�3537

�−3�33�∗ �−3�09�∗ �−2�82�∗ �−2�73�∗
�−0�59�−0�14� �−0�60�−0�13� �−0�62�−0�11� �−0�60�−0�09�

�MBEAR 0.2574 0.3179 0.3495 0.2542
�3�89�∗ �4�00�∗ �3�77�∗ �2�42�∗

[0.14, 0.39] [0.18, 0.49] [0.19, 0.55] [0.08, 0.50]
�M�1 +�MBEAR −0�0206 0.0261 0.0546 −0�0230

�−0�18� (0.21) (0.42) �−0�18�
�−0�24�0�21� �−0�19�0�28� �−0�19�0�32� �−0�27�0�27�

R2 0.3876 0.3831 0.3792 0.3708
F-value 56�8∗ 55�7∗ 54�8∗ 52�9∗
DW 2.02 2.01 2.01 2.00
LB(60) 58.6 53.7 61.1 59.59

The estimated model is

�d� t = �0 +�1�d� t−1 +�2�d� t−2 +�R�Rd� t−1�+�RRd� t−1

+�M�1Mt−1 +�MBULLBULLtMt−1 +�MBEARBEARtMt−1 +�t �

where BULL (BEAR) is a dummy variable that takes the value of one during those periods when at least N consecutive total
monthly returns are positive (negative), and the value zero otherwise. Four cases are examined for N = 3�4�5, and 6 months.
See Table 1 for remaining variable definitions and explanations.

Table 3 presents the regression results for all four definitions of bull and
bear periods. The coefficients of interest are �MBULL and �MBEAR. The coef-
ficient �MBULL is negative, suggesting that in bull periods the negative asso-
ciation of margins with volatility is slightly stronger. This coefficient, is
however, not statistically significant. Only in the horizon N = 3, do we find
statistical significance at the 10% level. The sum �M�1 +�MBULL shows that
the total short-run association of volatility with margins during bull periods
strengthens marginally relative to normal periods.
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Unlike bull periods, the relationship between margin requirements and
volatility weakens substantially in bear periods. In all cases, the coefficient
�MBEAR is positive and statistically significant. Moreover, the sum �M�1 +
�MBEAR is close to zero and statistically insignificant. For example, in the
case of N = 3, coefficient �MBEAR is equal to 0.2574 with a t-statistic of
3.89, while the sum �M�1 +�MBEAR is equal to −0�0206 with a t-statistic of
only −0�18. In the cases of N = 4 and 5, the sum �M�1 +�MBEAR even turns
slightly positive. We conclude that the relation between margins and volatility
turns slightly more negative during bull periods, but disappears during bear
periods.8

2. An EGARCH-M Model of the Asymmetry

The previous section investigated the relationship of margin requirements
with daily volatility in the U.S. stock market through regression analysis in
a monthly sample. This section presents a complementary model, which can
be used to investigate the relationship between initial margin requirements
and the conditional moments—mean and variance—of daily, weekly, and
monthly stock market returns. The model is an expanded version of Nelson’s
(1991) model.

2.1 Conditional mean of returns
Stock market returns are expressed as: Rt =*t+�t , where *t ≡E�Rt � It−1� is
the conditional mean of returns for period t based on information available
up to time t− 1� It−1, and �t is an error term used as proxy for market
innovations (shocks). The conditional mean is specified as:

*t = ,0 +,MMt−1 +
k∑

s=1

,sRt−s+-�2
t � (7)

where Mt denotes the level of initial margin requirement at time t−s fraction
from zero to one, as defined previously, Rt−s are past returns, and �2

t ≡
var�Rt � It−1� is the conditional variance of Rt based on It−1.

The specification of the conditional mean in Equation (7) is standard.
Lagged returns are included to absorb serial correlation whenever it exists.
The �2

t term is intended to capture a possible linkage between the first and
second conditional moments of the distribution of returns. This specification
is consistent with the static capital asset pricing model (CAPM) that assumes
a positive linear relationship between * and �2.9 Finally, the variable Mt−1

8 The sample period in Table 3 stops at December 1987 in order to facilitate the comparison with Tables 1 and
2. The results are qualitatively the same when the sample is extended to August 1994. We have also explored
other differences during bull and bear periods. For example, both the nonlinearity and the leverage effect are
stronger during bear periods, and the former seems to dominate the latter.

9 The empirical evidence on the presumed positive theoretical association for the U.S. is mixed; see French,
Schwert, and Stambaugh (1987), Baillie and DeGennaro (1990), Glosten, Jagannathan, and Runkle (1993),
and Theodossiou and Lee (1995).
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is included in order to capture a possible direct influence of margin require-
ments on the risk premium beyond its indirect influence through its possi-
ble association with volatility. Indeed, if higher margin requirements reduce
uncertainty about future unwarranted stock price movements, that is, uncer-
tainty originating from bubbles, fads, the pyramiding–depyramiding process,
etc., that is not fully captured by our measures of volatility, they may well
reduce the return investors require in order to invest in the stock market.

2.2 Conditional variance of returns
The specification of short-term market volatility in terms of the natural
logarithm of the conditional variance of returns, follows the work of Nel-
son (1991) with some modifications, which allow for a possible nonlinear
and asymmetric association between margin requirements and conditional
volatility:

ln��2
t � = �t+�MMt−1 +�MBEARBEARtMt−1 +�MBULLBULLtMt−1

+
p∑
s=1

�sg�zt−s�+� ln��2
t−1�� (8)

For daily returns, the constant term �t = �0 + ln�1+�NNt�, where Nt is
the number of nontrading days between two successive trading days [Nelson
(1991)]. For weekly and monthly returns, �t = �0. The component �MMt−1

captures the influence of an once-and-for-all change in margin requirements
during normal periods. The components �MBEAR BEARtMt−1 and �MBULL

BULLtMt−1 allow for a different relationship between margin requirements
and volatility during bull and bear periods. Recall that BEARt (BULLt� is
a dummy variable that takes the value of one during bear (bull) periods and
zero otherwise. Bear and bull periods are defined as in Table 3, column 2,
i.e., they represent periods of at least four consecutive �N = 4� total monthly
returns of the same algebraic sign.

The variables zt−s ≡ �t−s/�t−s , for s = 1� 1 1 1 � p, are Nelson’s (1991) stan-
dardized innovations, and the function g�zt−s� is an asymmetric nonlinear
function of zt−s given by:

g�zt−s�= �zt−s�−E�zt−s�+�t−szt−s� �t−s = �0 +�MMt−s� (9)

where � is the absolute value operator and E denotes the unconditional
expected value operator. Nelson’s (1991) formulation is the special case of
Equation (9), when �M = 0. The function g�zt−s� can be viewed as a proxy
function for past volatility shocks. By construction, the unconditional mean
of g�zt−s� is zero, E�g�zt−s��= 0. Therefore, under stationarity of the condi-
tional variance, g�zt−s� has a transitory impact on current conditional volatil-
ity and no impact on unconditional volatility. In general, a positive “overall”
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relationship is expected between past volatility shocks and current volatility,
that is,

∑p
s=1 �s > 0.

The function g�zt−s� is composed of both a symmetric component of
past innovations, �zt−s� −E�zt−s�, and an asymmetric component, �t−szt−s .
As such, it allows for a differential impact of past volatility shocks on cur-
rent conditional volatility, depending on whether these shocks are based on
negative or positive innovations. For example, if the asymmetry coefficient
is negative ��t−s < 0�, then negative past innovations �zt−s < 0� would have
a greater impact on current volatility than positive innovations of the same
magnitude.10 This can be verified by the fact that, for �t−s < 0, the partial
derivative of g�zt−s� with respect to zt−s is larger for negative innovations
than for positive innovations. That is, when �t−s < 0,

2g�zt−s�/2zt−s =−1+�t−s for zt−s < 0 (10)

2g�zt−s�/2zt−s = 1+�t−s for zt−s > 0 (11)

and �−1+�t−s�> �1+�t−s�� (12)

As mentioned in section 1.2, a negative �t−s is in line with the recent find-
ings of Pagan and Schwert (1990), Nelson (1991), Campbell and Hentschel
(1992), and Gallant, Rossi, and Tauchen (1992), among others. A negative
�t−s implies that volatility rises following “bad news” and falls following
“good news.”

The term �t−s=�0+�MMt−s in the modified equation g�zt−s��s=1�1 1 1 �p,
allows for an asymmetric nonlinear short-term relation between margins and
conditional short-term volatility. Provided that �t−s < 0, a negative and statis-
tically significant value for �M implies that increases in margin requirements
are associated with larger absolute values of the asymmetry coefficient �t−s .
Therefore, following large declines in stock prices, the higher the level of
initial margin requirements, the higher the market volatility; and, following
large increases in prices, the higher the level of initial margin requirements,
the lower the market volatility.

Finally, observe that from Equations (8) and (9), the expected value of the
long-run elasticity of volatility with respect to a permanent change in margin

10 Another way to illustrate that negative past innovations have a greater impact on current conditional volatility
than positive past innovations of the same magnitude is as follows. Let �z1� = �z2�, where z1 < 0 and z2 > 0.
Because E�z1� = E�z2�� g�z1�− g�z2� = �t−sz1 − �t−sz2 = �t−s �z1 − z2� > 0, for �t−s < 0, indicating that
volatility shocks due to negative innovations are larger to volatility due to positive innovations of the same
magnitude.
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requirements during normal periods is as follows:

Et

{
lim
k→


�2 ln�t+k/2 lnMt−1�
}
= 1/2��MMt−1�/�1−�� (13)

where 2 denotes partial derivative.

2.3 The distribution of the error term of conditional returns
Contrary to conventional practice, the conditional distribution of returns is
not simply assumed to be normal. Instead, it is modeled using the generalized
error distribution (GED),

f �Rt � *t��t� v�

= �0�5v/�t�4�3/v�
1/2 exp�−�4�3/v�/4�1/v��v/2��t/�t�v�� (14)

where 4��� is the gamma function and v is a scale parameter that controls
the shape of GED. The GED distribution accounts for excess kurtosis present
in U.S. stock market returns data, e.g., Theodossiou (1998). Note that for
v = 2, the GED gives the normal distribution and for v = 1 it gives the
Laplace (double exponential) distribution. The “theoretical” kurtosis for the
GED is given by K∗ = 4�5/v�4�1/v�4�3/v�−2. For v = 1�K∗ = 6 and for
v= 2�K∗ = 3. Values of 1 < v < 2 imply that 3 <K∗ < 6, in which case the
GED density has fatter tails and is more peaked in the middle (leptokurtic)
than the normal density.11

Estimates for the parameter vector 6 ≡ �,0� 1 1 1 � v� are obtained by max-
imizing the sample log-likelihood function

L�6�k�p�q�=
T∑
t=1

ln f �*t��t� v�Rt�� (15)

which is highly nonlinear in the parameters. The maximization of L(.) is
based on the Bernt et al. (1974) algorithm. The specification of the lag order
of the conditional mean and the conditional variance (i.e., k�p, and q) is
accomplished by means of the log-likelihood ratio test. Also, residual-based
diagnostic tests are performed to assess the robustness of the models.

3. The EGARCH-M Model Results

We now turn to the complete EGARCH-M model estimation. The maximum
likelihood estimates of the various EGARCH-M models for daily, weekly,
and monthly returns are reported in Tables 4, 5, and 6, respectively. In each
table, different versions of the model are presented, with and without the

11 Discussion on the properties and moments of the GED can be found in Nelson (1991), p. 366. Also, note that
if z is a standardized GED random variable, then E�z� = 4�2/v�/�4�3/v�4�1/v��1/2. For v= 2�E�z� =√

2/8.
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presence of margins. Each table has three panels. Panel A presents the esti-
mates of the conditional mean equation, panel B the estimates of the con-
ditional volatility equation, and panel C the model diagnostics. The tables
present the estimation results over the full sample period from October 1934
through September 1994.

3.1 Estimates of the conditional mean equation
of stock returns

In panel A of Table 4, daily stock market returns are modeled as a second-
order autoregressive process, AR(2). The presence of serial correlation in
daily stock returns may be the result of stale prices in the aggregate index.
Such serial correlation is less evident at the weekly and monthly horizon of
Tables 5 and 6. In the monthly sample, including the return at the fifth lag
absorbs some serial correlation. Re-estimating all these models without any

Table 4
EGARCH-M models of daily stock market returns with margin requirements

Coefficients Model 1 Model 2 Model 3 Model 4

Panel A. Conditional mean of returns

,0 0�0309 0�0416 0�0402 0�0408
�4�15�∗ �1�77� �8�23�∗ �8�37�∗

,M −0�0138
�−0�40�

,1 0�1099 0�1093 0�1082 0�1083
�14�1�∗ �14�1�∗ �14�1�∗ �14�1�∗

,2 −0�0493 −0�0500 −0�0501 −0�0501
�−6�61�∗ �−6�70�∗ �−6�75�∗ �−6�75�∗

- 0�0168 0�0133
�1�48� �1�14�

Panel B. Conditional variance of returns
�0 −0�0066 0�0032 0�0040 0�0040

�−2�89�∗ �0�92� �1�22� �1�20�
�N 0�0018 0�0090 0�0094 0�0105

�0�31� �1�46� �1�54� �1�68�
�M −0�0232 −0�0245 −0�0272

�−4�08�∗ �−4�70�∗ �−4�91�∗
�MBEAR 0�0131

�2�67�∗
�1 0�2477 0�2406 0�2394 0�2420

�17�6�∗ �17�5�∗ �17�5�∗ �17�6�∗
�2 −0�0733 −0�0674 −0�0675 −0�0695

�−4�50�∗ �−4�20�∗ �−4�23�∗ �−4�36�∗
�3 −0�0682 −0�0661 −0�0647 −0�0653

�−5�69�∗ �−5�56�∗ �−5�45�∗ �−5�49�∗
� 0�9908 0�9895 0�9899 0�9891

�784�4�∗ �724�5�∗ �767�2�∗ �713�2�∗
t�� = 1� −7�27∗ −7�70∗ −7�79∗ −7�85∗
�0 −0�4502 −0�0576

�−12�92�∗ �−0�49�
�M −0�7000 −0�7951 −0�7995

�−3�66�∗ �−13�7�∗ �−12�8�∗
Elasticity −0�5522 −0�6080 −0�6257
Null hypothesis (H0 9 ,M = (H0 9 �M = �M = 0� (H0 9 �M =

�M = �M = 0) �MBEAR = �M = 0)
L-ratio 25�6∗ 200�8∗ 207�6∗
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Table 4
(continued)

Coefficients Model 1 Model 2 Model 3 Model 4

Panel C. Model diagnostics
v 1�2542 1�2529 1�2523 1�2533

�95�7�∗ �96�4�∗ �97�6�∗ �97�6�∗
Log-L −18�107�0 −18�094�2 −18�094�9 −18�091�4
Mean of zt −0�0265 −0�0267 −0�0244 −0�0243
Min of zt −13�3187 −14�2333 −14�3217 −14�2828
Max of zt 6�3341 6�6336 6�6934 6�6321
Variance of zt 1�0212 1�0226 1�0229 1�0227
Kurtosis of zt 8�7670∗ 9�4342∗ 9�5207∗ 9�5038∗
Kurtosis K∗ based on v 4�5103 4�5153 4�5181 4�5140
Skewness of zt −0�5947∗ −0�6370∗ −0�6412∗ −0�6337∗
LB(24) 49�5∗ 51�1∗ 49�8∗ 49�4∗
LB(48) 72�3∗ 74�3∗ 73�3∗ 73�5∗
LB2(24) 32�8 32�3 32�6 33�4�

LB2(48) 46�0 43�8 43�8 45�0

The estimated model is

Rt = *t +�t = ,0 +,MMt−1 +
2∑

s=1
,sRt−s +-�2

t +�t �

ln��2
t � = �t +�MMt−1 +�MBEARBEARtMt−1 +

3∑
s=1

�s ��zt−s �−E�zt−s �+ ��0 +�MMt−s �zt−s �+� ln��2
t−1��

The sample covers the period October 15, 1934, to September 9, 1994, and includes 15,803 usable observations. Daily
continuously–compounded returns are constructed from the S&P 500 stock market index using the formula Rt = 100 ∗
ln�SPt/SPt−1�, where SPt is the value of the index at time t. Rt has a sample mean of 0.025%, a minimum of –22.8997% and
a maximum of 9.1914%. In the returns equations, Rt�*t is the conditional mean of Rt based on the information available up to
time t and �t is the models error used as a proxy for market innovations. Margin requirements, Mt , are expressed in decimals;
thus, they vary from zero to one. BEARt takes the value of one during bear periods and zero otherwise. A bear period is defined
as in Table 3, column 2, over a minimum four-month horizon of consecutive negative total monthly returns. In the conditional
variance of returns equation, zt−s ≡ �t−s /�t−s are past standardized errors, �t = �0 + ln�1+�N Nt� is the intercept expressed
as a function of the number of non-trading days between two successive trading days. The elasticity measure is calculated using
Equation (13).

Numbers in parentheses below the coefficient estimates are t-statistics. ∗ denotes statistical significance at the 5% level and
the symbol � statistical significance at the 10% level in a two-tailed test.

The parameter v is the scaling parameter for the conditional distribution of returns. Log-L is the sample log-likelihood function
evaluated at the MLE estimators. Parentheses include the t-values for the estimators. LB(N ) and LB2�N � are the Ljung-Box
 2 statistics for N lags on zt and z2

t , which test the null hypothesis of no serial correlation in each series. The kurtosis based
on the estimated parameter v is calculated using the formula K = 4�5/v�4�1/v�/4�3/v�2, where 4 (.) is the gamma function.
The skewness and kurtosis for zt are calculated using the formulas m3/s

3 and m4/s
4, where s2�m3�m4 are respectively the

sample variance, third and fourth centered sample moments of the estimated zt . The statistic t�� = 1� tests the null hypothesis
that the parameter � = 1.

autoregressive terms in the conditional mean does not affect the remaining
parameter estimates in any discernible way.

Consistent with the findings of the previous literature, panel A of Table 4
shows that the coefficient - for the conditional variance is statistically insign-
ificant (models 1 and 2), indicating that there is very weak positive linkage
between conditional stock market volatility and conditional mean returns. At
the weekly and monthly frequencies this linkage is even weaker, so no results
are presented including �2

t in the conditional mean equation.
The association of margin requirements with the conditional mean of

returns is quite interesting. The coefficient ,M is negative and, in the weekly
and monthly samples, statistically significant at the 5 and 10% levels respec-
tively. It follows from model 4, that an increase in margin requirements by
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Table 5
EGARCH-M models of weekly stock market returns with margin requirements

Coefficients Model 1 Model 2 Model 3 Model 4

Panel A. Conditional mean of returns
,0 0.2028 0.4318 0.4323 0.4621

(6.68)∗ (3.42)∗ (3.48)∗ (3.62)∗
,M −0.3906 −0.3924 −0.4174

(−1.95)� (−1.98)∗ (−2.10)∗

Panel B. Conditional variance of returns
�0 0.0381 0.0800 0.0797 0.0869

(4.57)∗ (4.07)∗ (4.08)∗ (4.13)∗
�M −0.0653 −0.0644 −0.0795

(−2.48)∗ (−2.48)∗ (−2.82)∗
�MBEAR 0.0981

(3.62)∗
�1 0.1770 0.1753 0.1754 0.1656

(8.22)∗ (7.74)∗ (7.75)∗ (7.33)∗
� 0.9699 0.9633 0.9632 0.9599

(172.0)∗ (148.6)∗ (148.6)∗ (141.9)∗
t�� = 1� −5.34∗ −5.66∗ −5.68∗ −5.93∗
�0 −0.4021 0.0642

(−5.12)∗ (0.25)
�M −0.9213 −0.8165 −0.6528

(−2.03)∗ (−5.20)∗ (−3.98)∗
Elasticity −0.4452 −0.4379 −0.4953
Null hypothesis (H0: ,M = (H0: ,M = (H0: ,M =

�M = �M = 0) �M = �M = 0) �M = �MBEAR= �M = 0)
L-ratio 16.12∗ 51.1∗ 59.1∗

Panel C. Model diagnostics
v 1.5062 1.5213 1.5226 1.5215

(49.9)∗ (41.3)∗ (44.0)∗ (44.1)∗
Log-L −6,393.4 −6,385.4 −6,385.4 −6,377.4
Mean of zt −0.0428 −0.0433 −0.0430 −0.0447
Min of zt −9.7249 −9.3873 −9.3323 −9.6456
Max of zt 4.1384 4.1851 4.1760 4.3764
Variance of zt 1.0096 1.0080 1.0079 1.0080
Kurtosis of zt 6.6676∗ 6.2068∗ 6.1571∗ 6.4856∗
Kurtosis K∗ based on v 3.7477 3.7135 3.7111 3.7135
Skewness of zt −0.6865∗ −0.6474∗ −0.6446∗ −0.6315∗
LB(12) 13.0 13.2 13.1 13.6
LB(24) 35.3� 35.0� 35.0� 35.1�

LB2(12) 4.0 3.8 3.9 4.3
LB2(24) 11.6 11.3 11.3 12.9

The estimated model is

Rt = *t +�t = ,0 +,MMt−1 +�t

ln
(
�2
t

) = �0 +�MMt−1 +�MBEARBEARtMt−1 +�1��zt−1�−E�zt−1�+ ��0 +�MMt−1�zt−1�+� ln
(
�2
t−1

)
�

The sample covers the period October 20, 1934, to September 2, 1994, and includes 3,118 usable weekly observations.
See the notes of Table 4 for variable definitions and other explanations. The sample mean of Rt is 0.1265%, its minimum
−19.0832%, and its maximum 16.3707%. Asterisk, ∗ , denotes statistical significance at the 5% level and the symbol �
statistical significance at the 10% level in a two-tailed test.

five percentage points, say from 0.5 to 0.55 or by 10%, is associated with
a drop in the required rate of return on the aggregate stock market by 2.1
basis points at the weekly horizon (1.04% annualized), which accounts for
16.5% of the weekly required rate of return, and by nine basis points at
the monthly horizon (1.08% annualized), which accounts for 16.3% of the
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Table 6
EGARCH-M models of monthly stock market returns with margin requirements

Coefficients Model 1 Model 2 Model 3 Model 4

Panel A. Conditional mean of returns
,0 0.6399 1.7216 1.8480 1.8828

(4.39)∗ (2.82)∗ (3.00)∗ (3.15)∗
,5 0.1103 0.1098 0.0931 0.0924

(3.07)∗ (3.05)∗ (2.60)∗ (2.60)∗
,M −1.8875 −1.8759 −1.8098

(−1.92)� (−1.89)� (−1.89)�

Panel B. Conditional variance of returns
�0 0.1817 0.2698 0.2089 0.3039

(2.59)∗ (1.90)� (1.91)� (2.20)∗
�M −0.0829 −0.0929 −0.1032

(−0�79) (−1�03) (−0�98)
�MBEAR 0.2687 0.2519

(2.94)∗ (2.42)∗
�MBULL −0.1914

(−2.24)∗
�1 0.1710 0.1574 0.1511 0.1521

(3.46)∗ (2.96)∗ (2.87)∗ (2.70)∗
� 0.9363 0.9224 0.9405 0.9192

(39.9)∗ (28.3)∗ (39.5)∗ (30.5)∗
t�� = 1� −2.71∗ −2.38∗ −2.50∗ −2.68∗
�0 −0.4740

(−1.92)�

�M −1.0477
(−1.81)�

Elasticity −0.2671 −0.3900 −0.3194
Null hypothesis (H0: ,M = (H0: ,M = (H0: ,M = �M =

�M = �M = 0) �M = �MBEAR = 0) �MBEAR = �MBULL = 0)
L-ratio 10.9∗ 14.6∗ 20.9∗

Panel C. Model diagnostics
v 1.3632 1.3882 1.4064 1.4092

(17.4)∗ (17.3)∗ (17.3)∗ (17.7)∗
Log-L −2�038�3 −2�036�2 −2�034�4 −2�031�3
Mean of zt −0�0411 −0�0371 −0�0484 −0�0503
Min. of zt −6�4101 −6�2912 −6�2034 −6�4072
Max. of zt 2.3580 2.4279 2.5269 2.6068
Variance of zt 1.0231 1.0193 1.0159 1.0163
Kurtosis of zt 6.5640∗ 6.3025∗ 6.2315∗ 6.2181∗
Kurtosis K∗ based on v 4.1269 4.0519 3.9998 3.9919
Skewness of zt −0�8594∗ −0�8549∗ −0�7923∗ −0�7388∗
LB(12) 9.7 9.5 11.1 12.8
LB(24) 21.6 20.3 22.1 24.1
LB2(12) 6.5 6.8 6.2 6.6
LB2(24) 15.1 15.6 14.4 15.3

The estimated model is

Rt = *t +�t = ,0 +,5Rt−5 +,MMt−1 +�t

ln
(
�2
t

) = �0 +�MMt−1 +�MBEAR BEARtMt−1 +�MBULL BULLtMt−1

+�1��zt−1�−E�zt−1�+ ��0 +�MMt−1�zt−1�+� ln
(
�2
t−1

)
�

The sample covers the period October 1934 to August 1994 and includes 716 usable observations. See the notes of
Table 4 for variable definitions and other explanations. The sample mean of Rt is 0.5547%, its minimum 28�8270%, and
its maximum 23.1614%. BEARt (BULLt ) takes the value of unity during bear (bull) periods and zero otherwise. A bear
(bull) period is defined as in Table 3, column 2, over a minimum four-month horizon of consecutive negative (positive)
total monthly returns.
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monthly required rate of return. As discussed earlier, one interpretation of
this finding is that during periods of higher margin requirements, the risk
premium declines due to the perceived beneficial effects of the more strin-
gent regulatory restriction.

It is difficult to find plausible alternative explanations to this negative asso-
ciation. The first such explanation that comes to mind is that of reverse
causation: margin requirements increase in anticipation of lower subsequent
market returns. However, the historical behavior of the Federal Reserve has
been the opposite: the Federal Reserve raised margins because it anticipated
further unusual increases, not declines, in stock prices [Hardouvelis (1990)].
A second explanation could be that since the Federal Reserve raised mar-
gins at times of rising stock prices, and since—in violation of the market
efficiency hypothesis or perhaps due to a systemic risk increase—typically
such an unusual increase in stock prices is followed by a decline in prices, a
negative relationship can emerge without the presence of either a causal or a
predictive link.

3.2 Estimates of the conditional variance equation of stock
returns without the presence of the margin variable

Panel B of Tables 4, 5, and 6 presents the results for the conditional variance
of returns. Model 1, in the first column of panel B, is similar to the models
estimated by Pagan and Schwert (1990) and Nelson (1991) because the mar-
gin variable is excluded from the equations. In the daily horizon of Table 4,
an EGARCH (1,3) model fits the data best, i.e., the conditional volatility
equation includes one own-lag and three lags for past volatility shocks. In
the weekly and monthly horizons of Tables 5 and 6, the best model is an
EGARCH (1,1).

Observe that the coefficients for past volatility shocks and the logarithm
of past conditional variance are similar across the five models of each table,
regardless of model specification. All coefficients for the logarithm of past
conditional variances are very close to unity, indicating high persistence of
volatility over time. For example, the coefficient � = 0�9908 in the daily
horizon implies that it would take approximately 249 = ln�0�1�/ ln�0�9908�
business days for the influence of current volatility on future volatility, mea-
sured by the logarithm of conditional variance, to diminish to one-tenth the
size of its influence on next period’s volatility. In the weekly and monthly
horizons, the persistence is stronger. For example, the coefficient � = 0�9363
in the monthly horizon implies that it would take 35 months for the influ-
ence of current volatility to diminish to one-tenth its current influence on
next period’s volatility.

Despite the high persistence in volatility, the t-statistics for testing the null
hypothesis that the autoregressive parameter � of the conditional variance is
unity reject the null strongly. In the daily data, the t-values range between
−7�27 and −7�85. These t-statistics all reject the hypothesis of a unit root
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in the conditional variance of daily returns. The equivalent t-statistics for
weekly data range from −5�34 to −5�93 and for monthly data they range
between −2�38 and −2�71, thus, they also reject the hypothesis of a unit
root.

In the daily and weekly horizons, the asymmetry coefficient �0 of model
1, the model without margins, is negative and statistically significant, con-
firming the established stylized fact for the postwar period that past negative
shocks on the conditional mean have a stronger association with current con-
ditional volatility than past positive shocks [Nelson (1991)]. Also, consistent
with the evidence of Glosten, Jagannathan, and Runkle (1993), who use only
the postwar subsample, in the monthly horizon of Table 6, �0 is much weaker
and is statistically significant only at the 10% level.

3.3 Estimates of the conditional variance equation
of stock returns with the margin variable

In Tables 4 and 5 for the daily and weekly returns, model 2 adds the mar-
gin variable as an explanatory variable in both the conditional mean and the
conditional variance equation. Thus, estimates are presented for the parame-
ters ,M��M , and �M . Model 3 is similar to model 2 but more parsimonious,
excluding some of the variables that are insignificant in models 1 and 2.
Model 4 adds BEARtMt−1 as an explanatory variable and thus distinguishes
the bear periods from the remaining sample in examining the direct rela-
tion between margins and volatility. In Table 6 for the monthly returns, bull
periods are separated as well because they show statistically significant dif-
ferences.

The last row of panel B in Tables 4, 5, and 6 presents a likelihood ratio
test statistic for the joint null hypothesis that the included margin variables
have zero coefficients in each model. These statistics overwhelmingly reject
the null hypothesis, indicating that the inclusion of margin variables in the
overall specification of the conditional variance and the conditional mean is
important.

In Tables 4 and 5, coefficient �M , which captures the association between
the level of margin requirements and volatility, is statistically significant in
all versions of the basic model. However, at the monthly horizon of Table 6,
the coefficient �M is insignificant, a piece of evidence consistent with the
results of Kupiec (1990), who utilized monthly data and a simpler GARCH-
M(1,1) model of the level of the S&P 500 index instead of its return. Perhaps,
monthly returns lack statistical power to detect the relationship of margins
with volatility, e.g., Andersen and Bollerslev (1997). Recall that in the regres-
sions of Table 1, which showed a stronger association between margins
and volatility, the sample was monthly but the volatility measure reflected
daily volatility. These regression estimates are more comparable to the daily
EGARCH-M estimates rather than the monthly ones. The daily estimates in
Table 4 do show a significant coefficient �M .
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The expected value of the long-run elasticity of volatility with respect to
margins during normal and bull periods, calculated using Equation (13) in
model 4, is −0�63 in the daily sample of Table 4 and −0�50 in the weekly
sample of Table 5. These elasticities are based on the assumption that the cur-
rent level of initial margins is 50%, Mt−1 = 0�5, and that margins change per-
manently. The elasticities imply that a 10% increase in margins—an increase
from 0.50 to 0.55—would reduce daily volatility by about 6.3% and weekly
volatility by about 5.0%.

Consistent with the regression results of Table 3, the association of mar-
gins with volatility is also estimated to be substantially weaker during bear
periods. In all three frequencies, the coefficient �MBEAR is positive and sta-
tistically significant, while the sum �M +�MBEAR, which captures to total
association of margins with volatility during bear periods is close to zero.
When it comes to monthly volatility, in Table 6, in addition to the positive
and significant coefficient �MBEAR, the coefficient �MBULL is negative and
statistically significant as well, indicating a stronger (more negative) relation
between margins and volatility during bull periods relative to normal periods.
Observe that unlike Table 6, Tables 4 and 5 do not report separate estimates
for �MBULL. As was the case with the daily volatility of the earlier regression
models in Table 3, the association of both daily and weekly volatility with
margins, while stronger during bull periods, is not statistically different from
the association during normal periods.

Margins also play an important role in the asymmetric association of past
news with current conditional volatility. The negative asymmetry parameter
�0 of model 1, which is statistically significant in the daily and weekly hori-
zons of Tables 4 and 5, is explained almost entirely by the variation in margin
requirements in model 2. The estimated parameters �t−s are associated nega-
tively and significantly with the level of margin requirements, Mt−s , and have
an intercept close to zero, i.e., �0 � 0 and �M < 0. The asymmetry coefficient
becomes more negative (more pronounced) when margins are high, and less
negative (less pronounced) when margins are low. Thus, ceteris paribus, at
times when stock prices decline, subsequent volatility is higher the higher
the margin requirement. Similarly, at times when stock prices increase, sub-
sequent volatility is lower, the higher the margin requirement.12

The absorption of the asymmetry parameter �0 in the daily and weekly
horizons by the level of margin requirements is striking because it is hard
to imagine that a variable like margin requirements that has changed only
22 times over the sample period can “explain away” the asymmetry. This
finding is perhaps less puzzling if one recalls that (a) the negative relation
between conditional volatility and past returns is a tail phenomenon [Gallant,

12 In the monthly volatility of Table 6, when coefficients �0 and �M are estimated simultaneously, they both
become statistically insignificant, a result—not reported—equivalent to the regression results in Table 1, model
5, in which both coefficients �R and �RM are statistically insignificant.
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Rossi, and Tauchen (1992)], i.e., it occurs for large changes in prices, and
(b) margins are supposed to play a critical role exactly at times of very large
increases or decreases in prices: at times when prices increase drastically, the
disruption-preventive role of margins is enhanced, whereas, at times when
prices fall rapidly, it is the liquidity constraining role of margins which is
enhanced.13

3.4 EGARCH-M model diagnostics
The first row of panel C in Tables 4, 5, and 6 shows that the estimated scaling
parameter v for the conditional distributions of returns ranges around 1.25 in
the daily, 1.52 in the weekly, and 1.4 in the monthly horizon. In the daily
horizon, therefore, the distribution is much closer to the Laplace distribution
�v = 1� than to the normal distribution �v = 2�. Observe also that the theo-
retical kurtosis based on the estimated scaling parameter v is smaller than the
empirical kurtosis estimated using the standardized residuals. This difference
is particularly pronounced in the daily and weekly horizons and may be due
to the negative skewness present in the distribution of returns as well as the
presence of data outliers.

The remaining rows of panel C contain additional useful information. The
LB statistics are used to test the null hypothesis of no serial correlation in
the standardized residual and squared standardized residual series, zt and
z2
t . Serial correlation in the zt series may imply that the conditional mean of

returns is misspecified. Similarly, serial correlation in the z2
t series may imply

that the conditional variance equation of returns is misspecified. For daily
data, the LB statistics are calculated using 24 and 48 lags and, for weekly
and monthly data, using 12 and 24 lags. In the daily horizon of Table 4, some
serial correlation remains despite the presence of two autoregressive terms in
the conditional mean equation. Nevertheless, additional autoregressive terms
in the existing conditional mean equation are not warranted because their
inclusion provides statistically insignificant autoregressive coefficients. On
the other hand, the LB tests on the squared residuals, denoted by LB2�N �,
are statistically insignificant in all three tables, providing no evidence of
misspecification in the conditional variance equation.

4. Interpretation: Which Hypothesis Explains
the Negative Association Between Initial Margin
Requirements and Volatility?

It is time now to explore possible explanations of the preceding evidence,
beginning with hypotheses which assign a neutral noncausal role to margin
requirements. The first such hypothesis states that the observed negative

13 While striking, the absorption of the asymmetry parameter by the level of margin requirements is, nevertheless,
consistent with earlier findings by Gallant, Rossi, and Tauchen (1992) that the negative relationship between
conditional volatility and past returns disappears once the analysis includes additional conditioning variables.
Specifically, the above authors showed that the asymmetry disappears in the daily horizon when one conditions
with respect to past trading volume.
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association of margin requirements with future volatility reflects a reverse
causation from anticipated future volatility to current margins. In this inter-
pretation, margin requirements are innocuous; namely, they do not increase
the cost of trading by imposing a binding constraint on the behavior of
investors. While a reverse causation is possible, it does not appear plausible
for two reasons: first, it implies that the Federal Reserve used to raise mar-
gins in anticipation of lower volatility, a behavior that is counterintuitive and
contradicts, for example, the current behavior of the futures exchanges when
they decide to change futures margins [e.g., Hardouvelis and Kim (1995)
and Booth et al. (1997)]. Moreover, there is no evidence for such behavior
in the published documents of the Federal Reserve in which Federal Reserve
officials explain their actions. Second, in practice, the neutrality assumption
that underlies this interpretation may be too strong. While it is true that,
in the long run, financial market participants find ways around regulatory
restrictions, it is not clear that these methods carry zero added cost. More-
over, over time, the participants in financial markets are not the same. New
entrants may face a higher cost of trading due to the margin regulation than
older seasoned participants.

A second related interpretation in which, again, margins play no causal
role is as follows: the Federal Reserve raises margins reacting to third vari-
ables such as the recent rapid increase of margin credit and stock prices [see
Hardouvelis (1990)]; subsequently, these variables themselves cause volatility
to decline. A priori, this could be a plausible interpretation if it were sub-
stantiated. Yet, the earlier exhaustive analysis of Hardouvelis (1990) shows
that the negative association between margins and volatility is even stronger
once one controls for such third factors. In the present article, we did not
pursue this type of analysis in great detail. Among the possible third factors
that could generate a spurious negative relation, the only one for which we
have daily information, is stock prices and we already controlled for it in
our model. We showed that the inclusion of the lagged stock return in the
regression model strengthens the margin coefficient (compare models 2 and 3
of Table 1).

A third possible interpretation is that, in a market of rational investors,
higher margins raise the cost of trading and cause volatility to decline. How-
ever, models based on rational investors alone typically predict that when the
cost of trading increases from the imposition of higher margins and rational
investors leave the market, volatility increases, rather than decreases, as liq-
uidity dries up. To build a theoretical model without the presence of irrational
investors that explains this association is a major challenge.14

14 Chowdhry and Nanda (1995) take a step in this direction: in their model, a fall in price is equivalent to an
increase in the borrowing constraint of risk-averse investors as their wealth declines, while an increase in
price is equivalent to a relaxation of the constraint. The rigidity of the margin requirement creates instability.
Their model suggests the same margin rule similar to the one derived from the empirical evidence of this
paper: during times of large price increases, it is prudent to raise margin requirements, while, during times of
large price declines, it is prudent to lower them.
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The final interpretation is in line with the pyramiding–depyramiding story,
which takes for granted the presence of irrational investors alongside rational
ones. According to this interpretation, during bullish markets, initial mar-
gin requirements impose a constraint on excessive speculation and result in
lower subsequent market disruptions and volatility because they force irra-
tional investors to reduce their participation in the market. The pyramiding–
depyramiding story can also explain the observed asymmetry during bear
markets: In a bear market, when prices drop by large amounts and investors
capital approaches the minimum maintenance margin of 25%, more brokers
would require that investors deposit additional funds to recapitalize their posi-
tion to the level of the initial margin requirement. The requirement to come
up with the cash puts further downward pressure on prices either because
other stocks are sold to generate cash or because brokers liquidate their cus-
tomers positions by selling the original stocks that they keep as collateral. In
these circumstances, a lower initial margin requirement would reduce the liq-
uidity need of customers who receive margin calls and, hence, would soften
the downward pressure on prices and the turmoil in the market. Lower initial
margin requirements would also reduce the cost of arbitrage, encouraging
other rational investors, who view the drop in prices as unwarranted, to enter
the market and purchase stocks, thus smoothing the decline in prices and the
depyramiding process and reducing volatility.15

The negative relationship between current margin requirements and the
subsequent conditional mean of stock returns is also hard to explain with
models that assume margins are neutral, even if one were to resort to obscure
interactions with third factors [Hardouvelis (1990)]. This negative relation-
ship, however, can easily be interpreted as a reduction in the risk premium
once margins are increased. The reduction in systemic risk is in line with
the pyramiding–depyramiding hypothesis and was the purpose of the margin
regulation in the first place.

5. Summary and Policy Conclusion

Following the original Hardouvelis (1990) study, which provides evidence
of a negative relation between initial margin requirements and volatility, a
number of authors concluded that margins are unrelated to volatility and that
the negative association reported in Hardouvelis (1990) is most likely the
result of bias arising from the spurious regression phenomenon of Granger-
Newbold (1974). The Granger-Newbold bias can arise when two highly auto-
correlated time series, like margin requirements and volatility, are regressed
on each other in level form.

15 In the Japanese stock market, following a price decline, the authorities reduce margin requirements and
subsequently prices rebound immediately. See Figure II of Hardouvelis and Peristiani (1992). Another piece
of evidence consistent with the liquidity story is provided by Seguin and Farrell (1993). They find that during
the crash of 1987, U.S. stocks eligible for margin trading fell less than U.S. stocks ineligible for margin
trading.
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Our analysis shows that both the volatility and the margin series are highly
autocorrelated, but stationary, and that the Granger-Newbold bias in the level
regressions is neither economically nor statistically significant. These results
imply that the specification of the regression equations in level form pro-
vides unbiased estimates of the true relationships. The specification in first-
differences could provide unbiased estimates as well, provided that the lagged
levels of margin requirements and volatility are included in the regressions
in a manner similar to the inclusion of error-correction terms in cointegrated
systems. When this is done, the regressions in first-difference form also point
to a negative association.

Our regressions in levels are consistent with the manner in which a vast
set of models in the finance literature, the GARCH models, treat volatility.
Although highly autocorrelated, stock market volatility is treated as a sta-
tionary process, and correctly so. In this paper, we also examine the relation
between margin requirements and volatility within an EGARCH-M model,
applied at three different frequencies, daily, weekly, and monthly. Not sur-
prisingly, these models also reveal a negative association between margins
and volatility. For example, according to the weekly EGARCH-M estimates,
a permanent increase in margin requirements by 10% during “normal” peri-
ods (e.g., from 0.5 to 0.55) would be associated with an average reduction
in volatility by 4.95%, revealing an elasticity of approximately one-half.

One interpretation of the negative association is that higher margins cause
the undesirable excess component of volatility to decline. This interpretation
is reinforced by the simultaneous finding that higher margins are associated
with lower-risk premia: The same increase of margin requirements by 10%
is associated with a decline in the risk premium of weekly returns by two
basis points, or 1.04 percentage points annualized.

A major new finding in the paper is that the relation between margin
requirements and volatility is a nonlinear one, varying both according to the
size of the previous price change and according to the overall direction of
the market, that is, whether it is a bull, a sideways, or a bear market. Recall
that a stylized fact in the finance literature is that, ceteris paribus, volatility
rises following a decline in stock prices and falls following a rise in stock
prices. Both the regression models and the EGARCH-M models show that
the asymmetry between returns and volatility becomes stronger when margins
are high and weaker when margins are low. Put differently, at times when
stock prices decline, if margin requirements are low, the subsequent volatility
is not as high as it would be if margin requirements were high. Conversely,
at times when stock prices rise, if margin requirements are low, subsequent
volatility is not as low as it would be if margin requirements were high.

There is also a major asymmetry in the relation between margin require-
ments and volatility across bull, normal, and bear periods. The negative rela-
tion is slightly stronger in bull periods but disappears during bear periods.
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The asymmetry across bull and bear markets is detected both in the regres-
sion models and in the EGARCH-M models at all three frequencies.

The asymmetries in the relation between margins and volatility are con-
sistent with the pyramiding–depyramiding process of stock prices that was
discussed in the introduction and provide a clear policy conclusion: accord-
ing to our results, when stock prices tumble and margin calls are issued by
brokers, it would be stabilizing to avoid further margin calls and to reduce the
cost of arbitrage by temporarily lowering the level of initial margin require-
ments. Conversely, when stock prices keep rising as in the case of a bubble,
it would be stabilizing to have higher margin requirements.

The above policy conclusion is quite intuitive and transcends the specific
case of margin requirements: regulators should impose restrictions to avoid
problems before these problems actually occur, not in the middle of a crisis.
For example, in the middle of a bear market, they should avoid imposing a
transactions tax on stock trading or even on the frequent churning of stocks.
Similarly, in banking, regulators should not and would not enforce stricter
capital standards on a banking system that is on the verge of collapse. They
would enforce stricter capital standards during normal periods and ahead of
time to prevent such future bankruptcies.

Should a policy of active management of margin requirements restart in the
United States? Assuming that the regulatory authority can measure the market
sentiment, i.e., can assess whether there is a bull, normal, or bear period,
the empirical estimates in the paper give a positive answer. Nevertheless,
some may argue that today’s financial environment is fundamentally different
from what it used to be 60 or even 30 years ago. Today, there are many
innovations in the market that help circumvent the regulatory restrictions
on broker lending. Such examples are the futures and options contracts that
were mentioned earlier, or the relatively newer equity swaps. While this
argument is true, one should not lose sight of the fact that financial market
innovations are primarily utilized by institutional investors. These innovations
are usually too costly for individual investors. Small investors, those who will
soon proliferate in the developing Internet trading market, are constrained by
margin requirements because, for the purposes of buying stocks, a broker
loan is a far easier and cheaper transaction than, say, a home equity or any
other type of loan.

Should policy makers in emerging markets follow an active margin policy?
In these markets, the answer is a clearer yes. Unlike the U.S. market, emerg-
ing markets usually suffer from lack of liquidity, high volatility, insider trad-
ing, an inadequate regulatory framework, etc. In such markets, the need for
stricter rules on borrowing is much more pronounced. Moreover, margin
restrictions are more effective in constraining borrowing behavior than they
are in the United States since financial innovations, which usually originate
in the United States, arrive at these countries with a considerable delay.
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Appendix: Assessing the Importance of the Granger-Newbold
Spurious Regression

To estimate the size of the potential bias due to the Granger-Newbold spurious regression
phenomenon and to find the lowest 2.5% area of the t-distribution of the OLS regression coef-
ficients under the null, we run bootstrap simulations, following the steps described below:

(i) Estimate the regression �d� t = �0 + �1�d� t−1 + �2�d� t−2 + �R�Rd� t−1� + ut , for t =
1�2� 1 1 1 � T , using OLS. Let �0�OLS� �1�OLS� �2�OLS , and �R�OLS denote the estimated
OLS parameters and uOLS = �uOLS�1� uOLS�2� 1 1 1 uOLS�T �’ denote the vector of OLS
residuals.

(ii) Draw with replacement from uOLS to generate a new vector of residuals uSIM of the
same size. Then, calculate recursively a “bootstrap” volatility series �SIM� t using the
residuals uSIM� t , and the OLS coefficients �0�OLS� �1�OLS� �2�OLS , and �R�OLS , along with
the variables �Rd� t−1���SIM� t−1, and �SIM� t−2. As starting values for the volatilities �SIM�0

and �SIM�−1, use the average sample volatility. Note that by construction, �SIM� t retains
the statistical properties of the observed series �d� t , but it is unrelated to Mt−1�Rd� t−1,
and the cross product Rd� t−1Mt−1.

(iii) Run the regressions in Models 1–5 using the artificial series �SIM� t , its past artificial
values �SIM� t−1 and �SIM� t−2, and the actual series �Rd� t−1��Mt−1, and Rd� t−1 and save
the coefficient estimates with their t-statistics. Notice that by regressing on the actual
level of the Mt−1 series, we preserve not only its autocorrelation properties but all its
empirical characteristics.

(iv) Repeat steps (ii) and (iii) 10,000 times and generate an empirical distribution for each
regression coefficient as well as an empirical distribution of its t-statistic.

(v) Use the distribution of coefficient estimates to construct the average coefficient and its
standard deviation. The average coefficient for each of the variables Mt−1�Rd� t−1 and
Rd� t−1Mt−1 is an estimate of the bias in the original OLS regression coefficient. The
ratio of the average coefficient to the standard deviation is the reported t-statistic on
the bias. The empirical distribution of the t-statistic, on the other hand, can be used
to perform hypothesis testing on the original OLS regression coefficient under the
null. For this reason, the value of the t-statistic at the lowest 2.5% cutoff point of the
distribution is reported in curved brackets, {}. OLS t-statistics lower (algebraically)
than this cutoff statistic indicate statistical significance at the 5% level in a two-tailed
test.
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